
Reducing insertion time in LRC-based cloud storage

systems

Zhenyuan Liu, Zhen Huang and Dongsheng Li

School of Computer Science
National University of Defense Technology

Changsha, China

liuzhenyuan@outlook.com

Abstract—In traditional erasure codes, all the redundant data

are created and uploaded to the different storage nodes by a

unique source node. However, such a source node may have

limited communication and computation capabilities, which

constrain the storage process throughput. In-network

redundancy generation can improve data insertion throughput

through distributing the data insertion load among the source

and storage nodes. But it's hard to schedule the generation

process. Many works have proposed some heuristic scheduling

algorithms to improve data insertion throughput. We propose a

new method combined global and local optimization to schedule

the process. Experimental results show that our method reduce

insertion time up to 18% compared with the best heuristic

scheduling algorithm.

Keywords—Insertion time; in-network redundancy generation;

LRC

I. INTRODUCTION

Cloud storage systems have gained prominence in recent

years [1]. In cloud storage systems, data redundancy is

essential due to storage node failures, or user attrition [2]. This

redundancy can be achieved using either replication, or

(erasure) coding techniques. Compared to replication, erasure

codes are more space efficient but its data insertion is restricted

to node who owns the original data (called source node) [3,9].

Source node has limited communication and computation

resources which leads to a lower insertion throughput. [4,5]

introduce in-network redundancy generation which can encode

data during the insertion process. How to schedule the in-

network redundancy generation has been proved to be a

complicated problem [5].

To schedule the in-network redundancy generation, L.

Pamies-Juarez et al. [4,5] proposes several heuristic scheduling

algorithms which aim at maximizing the utilization of the spare

resources of the storage nodes, thus improving the backup

throughput. But these heuristic scheduling algorithms all

belong to local optimization that lack global control. We

propose a method combined global and local optimization to

improve the performance of in-network redundancy generation.

After in-network redundancy generation process is

completed, nodes used in the process will form a transport

graph. The transport graph is non-trivial. Different transport

graphs lead to different results. We design an algorithm to get a

transport graph before in-network redundancy generation

process and use the graph as a guide on how to schedule the

process. We design a system combined the transport graph with

a kind of heuristic scheduling algorithm. Experiment shows

that our system can reduce insertion time and improve insertion

throughput compared with [4,5].

II. BACKGROUND

Locally Repairable Codes.

Erasure code is drawing more and more attention in cloud
storage system since it can improve system reliability and data
availability, more importantly, it reduces storage cost compared
to replication. Reed-Solomon codes are the standard design
choice but their high repair cost is often considered
unacceptable. There has recently been intense interest to
explore alternatives, such as the Regenerating Code (RGC)
[7,8], Hierarchical Code(HC) [9] and Homomorphic Self-
repairing Code(HSRC) [6], where the repair cost for lost data
can be reduced. These kinds of codes have local repairable
property that an erased encoded block can be reconstructed
from a small amount of data.

1) Locally Repairable Codes: We use a kind of Locally

Repairable Codes (LRC) introduced in [4] which has the

property that two codeword symbol can be xored for a third

one just like HSRC [6]. A ,n k code takes an object

1 2 2
(, ,..,), qk io o o o o F  , and generates 1(,..,)nc c c

that contains the k original symbols. We can represent the

locally repairable property in terms of repair groups

 ,..,i rR r r , and each codeword symbol i jc r can be

repaired/generated by summing the other symbols in jr ,

, ()i k k k jc c c r k i   , for predetermined k values,

2qk F  .

In-Network Redundancy Generation.

Besides high repair cost, another main drawbacks of using
classical erasure codes for storage is that redundant fragments
can only be generated by applying coding operations on the
original data. The generation of new redundancy is then
restricted to nodes that possess the original object (or a copy),
namely: the source node which then also bears the load of
inserting the encoded fragments at other storage nodes. The
amount of data the source node uploads is then considerably

International Conference on Electronic Science and Automation Control (ESAC 2015)

© 2015. The authors - Published by Atlantis Press 95

larger, including the data object and its corresponding
redundancy, resulting in lower data insertion throughput.

In replication based storage system, redundancy data can be
transferred in a pipelined way which allows quick data
insertion and replication. Unlike replication, where in-network
redundancy generation is achieved trivially, traditional erasure
codes are not easily amenable. L. Pamies-Juarez et al. [4,5]
have paid much attention on achieving in-network redundancy
generation through LRC and HSRC's locally repairable
property. They use some heuristic scheduling algorithms to get
efficient in-network redundancy generation, but these heuristic
scheduling algorithms belong to local optimization which may
leads to unfavorable results. We propose a new method
combined global and local optimization to improve the
performance of in-network redundancy generation.

III. SCHEDULING THE IN-NETWORK REDUNDANCY GENERATION

In this section, we present a new method to schedule the in-
network redundancy generation process.

Problem Statement

Take a ,n k LRC for example, it takes an object

1 2 3(, ,)o o o o , and generates a codeword 1 7(,..,)c c c

where 1 1c o , 2 2c o , 3 3c o . It has 7 different repair

groups  1 7,..,R r r , where:  1 1 2 4, ,r c c c ,

 2 1 3 5, ,r c c c ,  3 1 6 7, ,r c c c ,  4 2 3 6, ,r c c c ,

 5 2 5 7, ,r c c c ,  6 3 4 7, ,r c c c ,  7 4 5 6, ,r c c c .

We use the triplet notation  ,i j kc c c to represent the

possibility to generate fragment kc by xoring ic and jc ,

k i jc c c  . 1r has three possible generation relationships:

 1 2 4,c c c ,  1 4 2,c c c and  2 4 1,c c c . We call a

repair group is available when one of its generation
relationships exists.

Fig. 1. Traffic from source node

The in-network redundancy generation process starts from

source node that possesses the original object 1 2 3(, ,)o o o o .

Source node is responsible for transferring 1o , 2o and 3o to

three different nodes sequentially which generates

1 1c o ,
2 2c o ,

3 3c o . We call a node
iu when it stores

fragment ic . And to simplify the discussion, we assume that

completing transferring any one fragment would costs an equal
time-step. From Fig. 1, we could see the source node needs 3

time-steps to complete its transfer.
it in Fig. 1 means the

transfer order.

After the source node's work, it's time to decide how to
proceed the generation process. One possible solution is that
we randomly choose an available repair group to generate the
next fragment. We are able to complete generation at last but
we may get an unfavourable results. Fig. 2 shows a random

process. In Fig. 2, node 1u and 2u transfer fragment 1c and

2c respectively to node 4u . Fragment 4 1 2c c c  is then

generated in node 4u . In the same way, 5c , 6c and 7c are

generated in 5u , 6u and 7u respectively. It costs 7 time-steps

altogether to complete this redundancy generation process.
Fig. 3 shows another kind of process and it only needs 5 time-
steps which means transport graph in Fig. 3 would leads to a
better insertion throughput. If we see Fig. 2 and Fig. 3 as two
directed acyclic graph, we could find that the max distance
from source node to the last generated node is shorter in Fig. 3.
Making the max distance as shorter as possible is crucial to
construct a transport graph like Fig. 3. We show how we
construct a transport graph in next subsection.

Fig. 2. A random process

Modeling the redundancy generation process.

We define distance between two adjacent nodes as 1. For a

general ,n k LRC, when source node complete its transfer,

the max distance from source node to last generated node is 1.
At this moment, the max number of available repair groups is

2

kC in theory so we could generate up to
2

kC fragments in

distance 2. Then there will be at least
2

kn k C  fragments

waiting to be generated. At every distance, more fragments are

96

generated, less fragments will be left. Less fragments means
we could complete generation process earlier which leads to a
shorter distance. If we monitor available repair groups in real
time and generate fragments as much as possible in every
distance, we could make the max distance shortest.

Fig. 3. Another one

Now we explain how it works to monitor available repair

groups in real time. For every node iu , we use iQ to represent

its job queue. We add a job to a node's job queue when the
repair group its fragment belongs to becomes available. A node
should keep working until its job queue is empty. Take Fig. 3

as example, at first all , 7iQ i  are empty. After 2t time-step,

2c is generated which leads to  1 2 4,c c c available. Then

we add 4c to 1Q and 2Q . When 3c is generated,

 1 3 5,c c c and  2 3 6,c c c become available at the

same time. Then 1Q , 2Q and 3Q are updated accordingly. At

last, we could get a transport graph G depicted in Fig. 3.

We design a greedy algorithm in Algorithm 1 to get a

transport graph. We define a graph  ,G V E where V

represents a set of vertexes and E represents a set of edges.

We store G with an adjacency list Adj .

Algorithm 1 Greedy algorithm to get transport graph G with a

,n k LRC

Require: a ,n k LRC

Ensure: G

add source node s to V

for 1; ;i i k i   do

 add
iu to V

 add iu to . []G Adj s

end for

count n k 

while 0count  do

 if a new available repair group (,)i j ku u u emerges

then

 add ku to V

 add ku to . []iG Adj u , add ku to . []jG Adj u

 1count count 

 end if

end while

return G

In practical application, we could start transferring data

before its repair group is available. For example, in Fig. 3, 1u

can transfer fragment 1c to 4u , 5u and 7u once 1c is

generated. Besides, if a node needs to transfer data to several
nodes, we prefer to transfer data to nodes with bigger out-
degree. Fig. 4 shows the effect of out-degree. In Fig. 4, node

3u needs to transfer data to 5u and 6u . Out-degree of 6u is

bigger than 5u . We think node 6u has a higher priority for the

reason that it has more data to transfer.

Fig. 4. Effect of out-degree

For a general ,n k LRC, we could get a transport graph

G and take it as a guide on network topology, but how to

select the specific physical nodes still be an important issue.
[4,5] introduced some heuristic scheduling algorithms about
how to select nodes. L. Pamies-Juarez et al. [4,5] observe that
RndFlw policy achieves significantly better results in
comparison with other policies. RndFlw policy combines
Random and Maximum Flow. Random means it select random

97

nodes when scheduling traffic from the source node. In
Maximum Flow, nodes are sorted in descending order
according to the amount of redundant data these nodes can help
generate and nodes are selected according to their priority.
After source node complete its transfer, Maximum Flow tries
to maximize the use of those nodes that can potentially
generate more redundancy. We build a two-layer system to
combine transport graph and RndFlw which is presented in
next subsection.

System Overview.

We will provide a brief overview of our system in this
subsection. As depicted in Fig. 5, we build a two-layer system
to combine the transport graph and RndFlw.

Fig. 5. System architectural

We will provide a brief overview of our system in this
subsection. As depicted in Fig. 5, we build a two-layer system

to combine the transport graph G and RndFlw.

In logical layer, we compute the transport graph G

according to which kind of LRC are used. In physical layer, we
select specific nodes using RndFlw. To explain the two layer's

relationship and how they work together, we still use 7,3

LRC as an example. Firstly, we get 7,3 LRC's transport

graph in logical layer which is depicted in Fig. 3. From Fig. 3,
we see that source node needs to transfer data to 3 different
nodes. Using RndFlw, we select randomly 3 node for source
node. After source node's work, we know from Fig. 3 that we

need 3 nodes for  1 2 4,c c c ,  1 3 5,c c c and

 2 3 6,c c c respectively. Using RndFlw, we select 3 nodes

with higher priority. At last, we need a node for

 1 5 7,c c c and we still use RndFlw to select a node. Note

that no matter how we select specific nodes, the transport graph

G is fixed in logical layer.

IV. EVALUATION

This section we evaluate the insertion performance of our
system. We experiment on different size of data blocks when
we insert only once and when we need to do insert operation
many times continuously. We compare our system with
RndFlw. For all experiments, the results are reported by
averaging six runs.

Fig. 6. Insert only once

Fig. 7. Insert Five Consecutive Times

Experimental Environment.

The experimental study is conducted on an in-house cluster,
consisting of 10 nodes hosted on one rack. The nodes are
connected by a 1 Gbps switch. Each cluster node is equipped
with a quad-core Intel Xeon 2.4GHz CPU, 8GB memory and
two 500 GB SCSI disks.

Insert Only Once

We evaluate our system when we insert data just only once.
Data blocks used are 512KB, 1MB, 2MB, 8MB, 16MB and
32MB. From Fig. 6, we could see our system outperforms
RndFlw in all cases. When data size is small, our system takes
almost equal time with RndFlw as a result of additional
overhead of the logical layer.

98

Insert Five Consecutive Times.

In practical application, it is more likely to insert data in a
streamlined way. We test insertion performance when we insert
data five times consecutively. From Fig. 7, we could see our
system reduce insertion time by 15%, 18% and 17% when data
size is 8MB, 16MB and 32MB respectively compared with
RndFlw.

V. CONCLUSION

In this paper, we have proposed a novel method for the
scheduling of in-network redundancy generation process which
allows us to improve data insertion throughput. Our method
combines the transport graph and RndFlw. The transport graph
are obtained by a greedy algorithm. Experimental results show
that our method improve insertion throughput compared with
RndFlw. As future work, we intend to analyze nodes
availability's effect on our method in practical systems.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (Grant No. 61402490) and Excellent Ph.D.
Dissertation Foundation of Hunan, all support is gratefully
acknowledged.

REFERENCES

[1] Information on http://en.wikipedia.org/wiki/Cloud_storage

[2] Ghemawat S, Gobioff H, Leung S T. The Google file system[C]//ACM
SIGOPS operating systems review. ACM, 2003, 37(5): 29-43.

[3] Huang Z, Biersack E, Peng Y. Reducing repair traffic in p2p backup
systems: exact regenerating codes on hierarchical codes[J]. ACM
Transactions on Storage (TOS), 2011, 7(3): 10.

[4] Pamies-Juarez L, Datta A, Oggier F. In-network redundancy generation
for opportunistic speedup of data backup[J]. Future Generation
Computer Systems, 2013, 29(6): 1353-1362.

[5] Pamies-Juarez L, Oggier F, Datta A. Data insertion and archiving in
erasure-coding based large-scale storage systems[M]//Distributed
Computing and Internet Technology. Springer Berlin Heidelberg, 2013:
47-68.

[6] Oggier F, Datta A. Self-repairing homomorphic codes for distributed
storage systems[C]//INFOCOM, 2011 Proceedings IEEE. IEEE, 2011:
1215-1223..

[7] Dimakis A G, Godfrey P B, Wainwright M J, et al. The benefits of
network coding for peer-to-peer storage systems[C]//Third Workshop on
Network Coding, Theory, and Applications. 2007.

[8] Dimakis A G, Godfrey P B, Wu Y, et al. Network coding for distributed
storage systems[J]. Information Theory, IEEE Transactions on, 2010,
56(9):4539-4551.

[9] Duminuco A, Biersack E. Hierarchical codes: How to make erasure
codes attractive for peer-to-peer storage systems[C]//Peer-to-Peer
Computing, 2008. P2P'08. Eighth International Conference on. IEEE,
2008:89-98

99

http://cpro.baidu.com/cpro/ui/uijs.php?adclass=0&app_id=0&c=news&cf=1001&ch=0&di=8&fv=18&is_app=0&jk=a76a704491a814d9&k=support&k0=support&kdi0=0&luki=1&n=10&p=baidu&q=baidusiteerror_cpr&rb=0&rs=1&seller_id=1&sid=d914a89144706aa7&ssp2=1&stid=0&t=tpclicked3_hc&tu=u1615258&u=http%3A%2F%2Femuch%2Enet%2Fhtml%2F200909%2F1540132%2Ehtml&urlid=0

