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Abstract—In traditional erasure codes, all the redundant data 

are created and uploaded to the different storage nodes by a 

unique source node. However, such a source node may have 

limited communication and computation capabilities, which 

constrain the storage process throughput. In-network 

redundancy generation can improve data insertion throughput 

through distributing the data insertion load among the source 

and storage nodes. But it's hard to schedule the generation 

process. Many works have proposed some heuristic scheduling 

algorithms to improve data insertion throughput. We propose a 

new method combined global and local optimization to schedule 

the process. Experimental results show that our method reduce 

insertion time up to 18% compared with the best heuristic 

scheduling algorithm. 
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I.  INTRODUCTION  

Cloud storage systems have gained prominence in recent 

years [1]. In cloud storage systems, data redundancy is 

essential due to storage node failures, or user attrition [2]. This 

redundancy can be achieved using either replication, or 

(erasure) coding techniques. Compared to replication, erasure 

codes are more space efficient but its data insertion is restricted 

to node who owns the original data (called source node) [3,9]. 

Source node has limited communication and computation 

resources which leads to a lower insertion throughput. [4,5] 

introduce in-network redundancy generation which can encode 

data during the insertion process. How to schedule the in-

network redundancy generation has been proved to be a 

complicated problem [5].  

To schedule the in-network redundancy generation, L. 

Pamies-Juarez et al. [4,5] proposes several heuristic scheduling 

algorithms which aim at maximizing the utilization of the spare 

resources of the storage nodes, thus improving the backup 

throughput. But these heuristic scheduling algorithms all 

belong to local optimization that lack global control. We 

propose a method combined global and local optimization to 

improve the performance of in-network redundancy generation. 

After in-network redundancy generation process is 

completed, nodes used in the process will form a transport 

graph. The transport graph is non-trivial. Different transport 

graphs lead to different results. We design an algorithm to get a 

transport graph before in-network redundancy generation 

process and use the graph as a guide on how to schedule the 

process. We design a system combined the transport graph with 

a kind of heuristic scheduling algorithm. Experiment shows 

that our system can reduce insertion time and improve insertion 

throughput compared with [4,5]. 

II. BACKGROUND 

Locally Repairable Codes. 

Erasure code is drawing more and more attention in cloud 
storage system since it can improve system reliability and data 
availability, more importantly, it reduces storage cost compared 
to replication. Reed-Solomon codes are the standard design 
choice but their high repair cost is often considered 
unacceptable. There has recently been intense interest to 
explore alternatives, such as the Regenerating Code (RGC) 
[7,8], Hierarchical Code(HC) [9] and Homomorphic Self-
repairing  Code(HSRC) [6], where the repair cost for lost data 
can be reduced. These kinds of codes have local repairable 
property that an erased encoded block can be reconstructed 
from a small amount of data. 

1) Locally Repairable Codes: We use a kind of Locally 

Repairable Codes (LRC) introduced in [4] which has the 

property that two codeword symbol can be xored for a third 

one just like HSRC [6]. A ,n k  code takes an object  

1 2 2
( , ,.., ), qk io o o o o F  , and generates 1( ,.., )nc c c  

that contains the k  original symbols. We can represent the 

locally repairable property in terms of repair groups 

 ,..,i rR r r , and each codeword symbol i jc r  can be 

repaired/generated by summing the other symbols in jr , 

, ( )i k k k jc c c r k i   , for predetermined k values, 

2qk F  . 

In-Network Redundancy Generation. 

Besides high repair cost, another main drawbacks of using 
classical erasure codes for storage is that redundant fragments 
can only be generated by applying coding operations on the 
original data. The generation of new redundancy is then 
restricted to nodes that possess the original object (or a copy), 
namely: the source node which then also bears the load of 
inserting the encoded fragments at other storage nodes. The 
amount of data the source node uploads is then considerably 
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larger, including the data object and its corresponding 
redundancy, resulting in lower data insertion throughput. 

In replication based storage system, redundancy data can be 
transferred in a pipelined way which allows quick data 
insertion and replication. Unlike replication, where in-network 
redundancy generation is achieved trivially, traditional erasure 
codes are not easily amenable. L. Pamies-Juarez et al. [4,5] 
have paid much attention on achieving in-network redundancy 
generation through LRC and HSRC's locally repairable 
property. They use some heuristic scheduling algorithms to get 
efficient in-network redundancy generation, but these heuristic 
scheduling algorithms belong to local optimization which may 
leads to unfavorable results. We propose a new method 
combined global and local optimization to improve the 
performance of in-network redundancy generation. 

III. SCHEDULING THE IN-NETWORK REDUNDANCY GENERATION 

In this section, we present a new method to schedule the in-
network redundancy generation process. 

Problem Statement 

Take a ,n k  LRC for example, it takes an object 

1 2 3( , , )o o o o , and generates a codeword 1 7( ,.., )c c c  

where 1 1c o , 2 2c o , 3 3c o . It has 7 different repair 

groups  1 7,..,R r r , where:  1 1 2 4, ,r c c c , 

 2 1 3 5, ,r c c c ,  3 1 6 7, ,r c c c ,  4 2 3 6, ,r c c c , 

 5 2 5 7, ,r c c c ,  6 3 4 7, ,r c c c ,  7 4 5 6, ,r c c c . 

We use the triplet notation  ,i j kc c c  to represent the 

possibility to generate fragment kc  by xoring ic  and jc , 

k i jc c c  . 1r  has three possible generation relationships: 

 1 2 4,c c c ,  1 4 2,c c c  and  2 4 1,c c c . We call a 

repair group is available when one of its generation 
relationships exists.  

 

Fig. 1. Traffic from source node 

The in-network redundancy generation process starts from 

source node that possesses the original object 1 2 3( , , )o o o o .  

Source node is responsible for transferring 1o , 2o  and 3o  to 

three different nodes sequentially which generates 

1 1c o ,
2 2c o ,

3 3c o . We call a node 
iu  when it stores 

fragment ic . And to simplify the discussion, we assume that 

completing transferring any one fragment would costs an equal 
time-step. From Fig. 1, we could see the source node needs 3 

time-steps to complete its transfer. 
it  in Fig. 1 means the 

transfer order. 

After the source node's work, it's time to decide how to 
proceed the generation process. One possible solution is that 
we randomly choose an available repair group to generate the 
next fragment. We are able to complete generation at last but 
we may get an unfavourable results. Fig. 2 shows a random 

process. In Fig. 2, node 1u  and 2u  transfer fragment 1c  and 

2c  respectively to node 4u . Fragment 4 1 2c c c   is then 

generated in node 4u . In the same way, 5c , 6c  and 7c  are 

generated in 5u , 6u  and 7u  respectively. It costs 7 time-steps 

altogether to complete this redundancy generation process. 
Fig. 3 shows another kind of process and it only needs 5 time-
steps which means transport graph in Fig. 3 would leads to a 
better insertion throughput. If we see Fig. 2 and Fig. 3 as two 
directed acyclic graph, we could find that the max distance 
from source node to the last generated node is shorter in Fig. 3. 
Making the max distance as shorter as possible is crucial to 
construct a transport graph like Fig. 3. We show how we 
construct a transport graph in next subsection. 

 

Fig. 2. A random process 

Modeling the redundancy generation process. 

We define distance between two adjacent nodes as 1. For a 

general ,n k  LRC, when source node complete its transfer, 

the max distance from source node to last generated node is 1. 
At this moment, the max number of available repair groups is 

2

kC  in theory so we could generate up to 
2

kC  fragments in 

distance 2. Then there will be at least 
2

kn k C   fragments 

waiting to be generated. At every distance, more fragments are 
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generated, less fragments will be left. Less fragments means 
we could complete generation process earlier which leads to a 
shorter distance. If we monitor available repair groups in real 
time and generate fragments as much as possible in every 
distance, we could make the max distance shortest. 

 

Fig. 3. Another one 

Now we explain how it works to monitor available repair 

groups in real time. For every node iu , we use iQ  to represent 

its job queue. We add a job to a node's job queue when the 
repair group its fragment belongs to becomes available. A node 
should keep working until its job queue is empty. Take Fig. 3 

as example, at first all , 7iQ i    are empty. After 2t  time-step, 

2c  is generated which leads to  1 2 4,c c c  available. Then 

we add 4c  to 1Q and 2Q . When 3c  is generated, 

 1 3 5,c c c  and  2 3 6,c c c  become available at the 

same time. Then 1Q  , 2Q  and 3Q  are updated accordingly. At 

last, we could get a transport graph G  depicted in Fig. 3. 

We design a greedy algorithm in Algorithm 1 to get a 

transport graph. We define a graph  ,G V E  where V  

represents a set of vertexes and E  represents a set of edges. 

We store G  with an adjacency list  Adj  . 

 

Algorithm 1 Greedy algorithm to get transport graph G with a 

,n k LRC 

 

Require: a  ,n k  LRC 

Ensure: G 

add source node s to V  

for 1; ;i i k i    do 

 add 
iu  to V  

 add iu  to . [ ]G Adj s  

end for 

count n k   

while 0count   do 

 if a new available repair group ( , )i j ku u u  emerges 

then 

  add ku  to V  

  add ku  to . [ ]iG Adj u , add ku  to . [ ]jG Adj u  

  1count count   

 end if 

end while 

return G 

 

In practical application, we could start transferring data 

before its repair group is available. For example, in Fig. 3,  1u  

can transfer fragment 1c  to 4u , 5u  and 7u  once 1c  is 

generated. Besides, if a node needs to transfer data to several 
nodes, we prefer to transfer data to nodes with bigger out-
degree. Fig. 4 shows the effect of out-degree. In Fig. 4, node 

3u  needs to transfer data to 5u  and 6u . Out-degree of 6u  is 

bigger than 5u . We think node 6u  has a higher priority for the 

reason that it has more data to transfer. 

 

Fig. 4. Effect of out-degree 

For a general ,n k  LRC, we could get a transport graph 

G  and take it as a guide on network topology, but how to 

select the specific physical nodes still be an important issue. 
[4,5] introduced some heuristic scheduling algorithms about 
how to select nodes. L. Pamies-Juarez et al. [4,5] observe that 
RndFlw policy achieves significantly better results in 
comparison with other policies. RndFlw policy combines 
Random and Maximum Flow. Random means it select random 
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nodes when scheduling traffic from the source node. In 
Maximum Flow, nodes are sorted in descending order 
according to the amount of redundant data these nodes can help 
generate and nodes are selected according to their priority. 
After source node complete its transfer, Maximum Flow tries 
to maximize the use of those nodes that can potentially 
generate more redundancy. We build a two-layer system to 
combine transport graph and RndFlw which is presented in 
next subsection. 

System Overview. 

We will provide a brief overview of our system in this 
subsection. As depicted in Fig. 5, we build a two-layer system 
to combine the transport graph   and RndFlw. 

 

Fig. 5. System architectural 

We will provide a brief overview of our system in this 
subsection. As depicted in Fig. 5, we build a two-layer system 

to combine the transport graph G  and RndFlw. 

In logical layer, we compute the transport graph G  

according to which kind of LRC are used. In physical layer, we 
select specific nodes using RndFlw. To explain the two layer's 

relationship and how they work together, we still use 7,3  

LRC as an example. Firstly, we get 7,3  LRC's transport 

graph in logical layer which is depicted in Fig. 3. From Fig. 3, 
we see that source node needs to transfer data to 3 different 
nodes. Using RndFlw, we select randomly 3 node for source 
node. After source node's work, we know from Fig. 3 that we 

need 3 nodes for  1 2 4,c c c ,  1 3 5,c c c  and 

 2 3 6,c c c  respectively. Using RndFlw, we select 3 nodes 

with higher priority.  At last, we need a node for 

 1 5 7,c c c  and we still use RndFlw to select a node. Note 

that no matter how we select specific nodes, the transport graph 

G  is fixed in logical layer. 

IV. EVALUATION 

This section we evaluate the insertion performance of our 
system. We experiment on different size of data blocks when 
we insert only once and when we need to do insert operation 
many times continuously. We compare our system with 
RndFlw. For all experiments, the results are reported by 
averaging six runs. 

 

Fig. 6. Insert only once 

 

Fig. 7. Insert Five Consecutive Times 

Experimental Environment. 

The experimental study is conducted on an in-house cluster, 
consisting of 10 nodes hosted on one rack. The nodes are 
connected by a 1 Gbps switch. Each cluster node is equipped 
with a quad-core Intel Xeon 2.4GHz CPU, 8GB memory and 
two 500 GB SCSI disks. 

Insert Only Once 

We evaluate our system when we insert data just only once. 
Data blocks used are 512KB, 1MB, 2MB, 8MB, 16MB and 
32MB. From Fig. 6, we could see our system outperforms 
RndFlw in all cases. When data size is small, our system takes 
almost equal time with RndFlw as a result of additional 
overhead of the logical layer. 
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Insert Five Consecutive Times. 

In practical application, it is more likely to insert data in a 
streamlined way. We test insertion performance when we insert 
data five times consecutively. From Fig. 7, we could see our 
system reduce insertion time by 15%, 18% and 17% when data 
size is 8MB, 16MB and 32MB respectively compared with 
RndFlw. 

V. CONCLUSION 

In this paper, we have proposed a novel method for the 
scheduling of in-network redundancy generation process which 
allows us to improve data insertion throughput. Our method 
combines the transport graph and RndFlw. The transport graph 
are obtained by a greedy algorithm. Experimental results show 
that our method improve insertion throughput compared with 
RndFlw. As future work, we intend to analyze nodes 
availability's effect on our method in practical systems. 
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