
A Forgery Attack on Leaked-State
Authenticated Encryption

Jieshen Mao1,2, Daoguang Mu2, Xuejia Lai1
1, Institute of Cryptology and Information Security, Dept of Computer Science and Technology

Shanghai Jiaotong University, Shanghai, China
2, Science and Technology on Communication Security Laboratory, Chengdu, China

Corresponding author: lai-xj@cs.sjtu.edu.cn

Abstract—The CAESAR competition is launched in 2013
which aims to find some authenticated encryption with good
security and performance. Among these submissions, LAC is
designed in a unique way with leaked-state structure. In this
paper, based on birthday paradox,we find a forgery attack on
LAC in nonce-misused case with time complexity 228. Moreover,
we generalize the attack on normal version of leaked-state
authenticated encryption and conclude some suggestions on how
to use such structure.

Keywords—CASESAR; LAC; birthday paradox; leaked-State
authenticated encryption; forgery attack

I. INTRODUCTION
Authenticated encryption (AE) [1] schemes are key-based

cryptography algorithms which provide both confidentiality
and authenticity, and both goals are fundamental goals in
cryptography. In later researches, authenticated encryption with
associated data (AEAD) [2] and nonce-based authenticated
encryption [3] are proposed to satisfy the real-world
cryptography. Some modes of operations on block cipher are
also designed to combine confidentiality and authenticity
together, such as CCM [4], OCB [5] and so on. Among those
designs, AES-GCM [6] is most widely accepted for the reason
of its good security. However, due to its poor performance,
many projects and works use some designs with worse security
and faster speed instead of AES-GCM.

In 2013, the CAESAR competition (Competition for
Authenticated Encryption: Security, Applicability, and
Robustness) [7] is announced for finding better AE than AES-
GCM. Many optional features can be considered in the
competition design. Besides the security, designer may
consider whether AE can be progressed on-line, whether AE
only need one path of encryption and decryption and the
inverse is free, whether AE allow nonce-misused or
decryption-misused, whether AE can increase associated data
and whether AE provide an immediate tag. It’s a hard problem
to get a balance between security, speed and those features. 57
submissions are collected around the world with different ideas
and structures. Most of them are based on block cipher, some
also give ideas on how to use stream cipher, hash function or
other primitives to construct AE. Combined with different
ideas of operation modes, researchers will discuss and vote for
some of candidates for second round competition.

LAC [8] is one of the submissions which uses a unique
structure similar to ALE [9]. We call such structure leaked-
state structure because it leaks some inner states and combines
them with parts of round states as a leaked-state which xor with
message as the ciphertext. LBlock [10] is the primitive of LAC.
LAC has many properties, such as inverse-free, on-line, good
security if the nonce is not reused. The most attractive features
are that it’s extremely lightweight, flexible and compatible.

The remainder of this paper is organized as follow. The
specification of LAC is given in Section II. Section III and IV
give the forgery attack on LAC and generalized leaked-state
AE. Some discussion and suggestions are proposed in Section
V. Section VI concludes this paper.

II. SPECIFICATION OF LAC

A. Procedure of LAC
LAC uses LBlock as its primitive and is based on the

leaked-state structure which is shown in Fig.1. Its encryption
accepts an 80-bit master key K, a 64-bit public message
number(PMN) as a nonce, message m and an associated data a.
Then it outputs the ciphertext c and a 64-bit authentication tag t.
Its decryption accepts an 80-bit master key K, a 64-bit public
message number(PMN) as a nonce, ciphertext c, an associated
data a and a 64-bit tag t. If the tag is correct, it output the
message m, otherwise it outputs a terminated mark⊥.

Padding pads length and 0 after message whose whole
length is a multiple of 48. By initialling the PMN by master
key K twice, the higher 80-bit state is used in initialling state
and the lower 80-bit state becomes the master key of key
schedule. Then it processes associated data with simplified
LBlock, called LBlock-s, and processes message with its
leaked version.

Using LBlock-s instead of LBlock is for the sake of speed.
LBlock is a variant of Feistel Network of 32 rounds and its
round function is:

33,...,3,2),8())((211   iXKXSPX iiii (1)

LBlock-s is a 16 rounds version of LBlock and replaces
different S-boxes of LBlock with the same 4-bit S-box.
LBlock-s outputs X17||X16. Leaked LBlock-s outputs X17||X16
and a leaked state X9*||X17*, denoted as:

International Conference on Electronic Science and Automation Control (ESAC 2015)

© 2015. The authors - Published by Atlantis Press 128

Fig.1. The encryption/authentication operation of LAC [8]

].8,...,30,31[

].8,...,30,31[

17
*
17

9
*
9

XX
XX



 (2)

The ciphertext is produced by the leaked state xor message.
The lower 48-bit output of LBlock-s and leaked LBlock-s is
xor with associated data and message as the next block’s round
state input.

At the final of encryption, the state is encrypted by master
key K with LBlock and generates the authentication tag t.
Decryption is similar with encryption, except that the message
is produced by the leaked state xor the ciphertext.

Leaked-state AE has the inverse-free feature, it doesn’t
need decryption operation of primitives. Thus hash round
function can be replaced in such structure, if proper state can
be leaked by leaked round function.

B. Security Claim of LAC
The security claim of confidentiality of the plaintext is no

less than 280.

The security claim of integrity for the plaintext, associated
data and PMN is that any forgery attack with an unused tuple
(PMN, a, c, t) has a success probability at most 2-64.

All of the above security claim is under one time nonce
case, that is to say, PMN cannot be used. In next Section, we
will show how the security drops a lot in nonce-misused case,
and we will conclude the suggestions against such attack.

Here we define the integrity to generate a forgery attack the
same as INT-PTXT [1]. We can query the encryption oracle in
specified q queries and t’ times and if we can give an unused
tuple (PMN, a, c, t), then we say we successfully launch a
forgery attack.

III. A FORGERY ATTACK ON LAC
We generate the forgery attack based on birthday attack

[11]. Considering the block state xor message, it’s the lower
48-bit, meanwhile the leaked state of higher 24-bit round state
also has been proceeded with message. Thus there are 8-bit of
the round state can be controlled by the attacker.

Here is the attack:

(a) Query 228 message M1M2, which is independently
uniformly random chosen, then we can get 228 ciphertext C1C2.

(b) According to M1M2 and C1C2, modify M2C2 which
makes the 8 duplicate bits of second block state with the same
value.

(c) By birthday paradox, the left 56-bit may have a collision
with high probability, but due to that the round state isn’t
outputted, we cannot directly know which are the collision.

(d) Here is the trick, we query those M1M2 with the same
M3M4M5, and get 228 ciphertext C3C4C5. We just judge the
collision by whether there are the same C3C4C5. The reason we
choose 3 more blocks is as the following: By each pair of MC,
we can recover 24-bit of the block state. Remember that we
consider the nonce-misused case, the key schedule will be the
same between every query. The probability of different block
states with the same 24-bit is 2-24, then the probability of
different block states with the same 24-bit on 3 rounds is 2-72,
which is less than 2-64. Thus we can say that the round state is
the same, and choose that pair as a collision.

(e) Now we get an inner collision, and the subkey is the
same, we can randomly add the same message after the pair,
use one of them to be authenticated, then the authentication tag
can be verified for the other one. Here we get a forgery attack.

Now we need to consider the time complexity and the
space complexity. The time complexity is very simple to
calculate: 228. The space complexity is a bit complicated. There
are 228 queries, each query need to store 2 blocks of message
and 5 blocks of ciphertext, message and the ciphertext is 48-bit.
Thus the space complexity is:

39.3628 27482  bits.

It’s a practical attack and it’s below the birthday bound.
The inner state of the leaked AE is very similar to the inner
state of hash function, therefore we can use the birthday bound
as the bound of nonce-misused case. In section V, we will
discuss whether it’s possible to exceed the birthday bound.

129

IV. A FORGERY ATTACK ON LEAKED-STATE AE
Consider the forgery attack in Section III, we actually view

LBlock-s as a black box and then we start our attack. Thus the
forgery attack can be generalized to normal case of leaked-
state AE.

Now we consider the following case:
s: the bits of leaked state duplicated with the bits of block

state which are both operated with message, which is to say,
the state can be recovered and be modified easily.
m: the length of message processed in each block operation.
s’: the bits of leaked state on the block state output.
l : the length of the inner state.
The time complexity is the number of the query. Since

there are s bits duplicated, we only need to find the collision
on the left l-s bits. Thus the time complexity is:

22
sl

. (3)

Then we have to calculate the space complexity. For each
query, we need to store several plaintext and ciphertext. In the
collision part, we need to store both of them. The number of
the blocks is determined by the bits we need to find collision.
Normally it’s recommended to be twice longer.

In the verification of collision, we only need to store the
ciphertext for the sake of checking the pair. The number of the
blocks is determined on the length of longest leaked inner state,
for example, in LAC, both of the leaked inner state is 24 bits,
therefore the longest leaked inner state is 24 bits.

Combine both finding collision and verifying collision, the
space complexity is:

 
















 




'
222 2

s
l

l
slm

sl
bits. (4)

V. DISCUSSION ON LEAKED-STATE AE

A. Nonce-misused Case
In real-world cryptography, it’s very common that

programmers fix one nonce as a constant. We have to consider
that AE schemes should not loss too much security in this
situation. In the case of LAC, if the nonce is reused, then the
attacker can find a forgery in 228. Although LAC performs
good in one-time nonce case, the security in nonce-misused
case performs too poor. For general leaked-state AE, we

suggest that 22
sl

is a in a safe bound. This means that the l of
leaked-state AE at least 128 bits.

Meanwhile, we suggest the s and s’ of leaked-state should
be small. The former one directly decreases the time
complexity of the attack. The later one means the round state
into next round can be detected for some bits, it may cause
security trouble. Take LAC as an example, if the leaked-state
consists of 2 parts, then the leaked-state on block state should
be third of whole length. Meanwhile it’s perferred that
LBlock-s uses 24 rounds and leaks the 8-th,16-th round, which
may improve the security in nonce-misused case.

B. Birthday Bound
It seems to be a question whether the security in nonce-

misused case can exceed the birthday bound. In the CAESAR
competition, some similar candidates exceed the birthday
bound, such as SHELL. However they use more complex
structures to achieve this goal.

Consider there’s a leaked state AE, besides the key
schedule and leaked ciphertext, it is very similar to a normal
hash function. If the nonce is reused, then the key is the same
and we can ignore the effect on key schedule. The leak of the
inner state may leak more information to the attacker. So we
believe it’s hard to exceed the birthday bound with leaked-
state AE.

C. Advantage of Leaked-state AE
The first advantage is the use of nonce. If we change the

nonce every time, the subkey will all be changed. This feature
seems to be one-time-pad. We believe the security in one-time
nonce case is one-time-pad if the primitives is CCA secure
and the key schedule doesn’t generate weak keys.

Using nonce in key schedule is a good idea, however many
other candidates also have similar use of nonce. The most
different feature of leaked-state AE is the light-weighted.
Because the encryption is just in one line, and the round of
primitive can be slightly decreased, if the primitive is light-
weight enough, then the AE scheme can be fast and flexible.
We suggest some 128-bit light-weighted cipher and hash
function may be good choice for the primitive.

VI. CONCLUSION

In this paper, we construct a forgery attack on LAC with
228 time complexity and 236.39 bits space complexity in nonce-
misused case. We also generalize the forgery attack to leaked-

state AE with 22
sl

time complexity. According to the attack
and analysis, we also propose some ideas to use such structure
quickly and safely.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China (61272440, 61472251), China
Postdoctoral Science Foundation (2013M531174,
2014T70417), and Science and Technology on
Communication Security Laboratory.

REFERENCES

[1] M. Bellare and C. Namprempre. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm. In
ASIACRYPT, volume 1976 of Lecture Notes in Computer Science, pp.
531–545. Springer, 2000.

[2] P. Rogaway. Authenticated-Encryption with Associated-Data. In ACM
Conference on Computer and Communications Security, pp. 98–107,
2002.

[3] P. Rogaway. Nonce-Based Symmetric Encryption. In FSE, pp. 348–359,
2004.

[4] D. Whiting, R. Housley, N. Ferguson,:AES Encryption and
Authentication Using CTR Mode and CBC-MAC. IEEE 802.11-
02/001r2 (2002)

130

[5] P. Rogaway, M. Bellare, J. Black, T. Krovetz: OCB: a block-cipher
mode of operation for efficient authenticated encryption. In ACM
Conference on Computer and Communications Security, pp. 196–205.
ACM (2001)

[6] D. McGrew and J. Viega. The Galois/Counter Mode of Operation
(GCM). Submission to NIST. http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/gcm/gcm-spec.pdf, 2004.

[7] CAESAR: Competition for Authenticated Encryption: Security,
Applicability, and Robustness, 2014, http://competitions.cr.yp.to/
caesar.html

[8] L. Zhang, W. Wu, Y. Wang, S. Wu, and J. Zhang. Lac: A lightweight
authenticated encryption cipher. http://competitions.cr.yp.to/round1/
lacv1.pdf, 2014.

[9] A. Bogdanov, F. Mendel, F. Regazzoni, V. Rijmen, E. Tischhauser:
ALE: AES-Based Lightweight Authenticated Encryption. Accepted by
FSE 2013. http://www2.compute.dtu.dk/~anbog/fse13-ale.pdf (2013)

[10] W. Wu, L. Zhang: LBlock: A Lightweight Block Cipher. ACNS 2011.
LNCS, vol. 6715,pp. 327-344. Springer, (2011)

[11] M. Bellare and T. Kohno. Hash function balance and its impact on
birthday attacks. Advances in Cryptology – EUROCRYPT ’04,

131

	 INTRODUCTION
	SPECIFICATION OF LAC
	Procedure of LAC
	Security Claim of LAC

	A FORGERY ATTACK ON LAC
	A FORGERY ATTACK ON LEAKED-STATE AE
	DISCUSSION ON LEAKED-STATE AE
	Nonce-misused Case
	Birthday Bound
	Advantage of Leaked-state AE

	CONCLUSION
	ACKNOWLEDGMENT
	REFERENCES

