
A Multi-granular Application Management and
Parallel Scheduling Model

Wei-Hua Bai1,2
1. School of Computer Science and Engineering

South China University of Technology
GuangZhou, China

2. School of Computer Science
ZhaoQing University

ZhaoQing, China
e-mail:bandwer@163.com

Jian-Qing Xi
School of Computer Science and Engineering

South China University of Technology
GuangZhou, China

Jia-Xian Zhu

School of Computer Science
ZhaoQing University

ZhaoQing, China

Shao-Wei Huang
School of Computer Science

ZhaoQing University
ZhaoQing, China

Abstract—We propose a novel multi-granular application

management platform between PaaS and IaaS layers by using
application virtualization techniques. We also investigate a
parallel scheduling model on the platform. With the help of fine-
grained application units, new functions can be created by
combining the application units in different granularities based
on business requirements. Moreover, we develop a multi-core-
aware parallel scheduling model to process application requests,
which not only increases the system flexibility and applicability,
but also improves fine-grained computing resource allocation, the
resource utilization of the fundamental infrastructure and system
throughput.

Keywords—Application Service; Web Service; Multi-core-
aware; Parallel Scheduling

I. INTRODUCTION
As the development of applications in various areas, big

data applications and the requirements of application services,
as well as the design and development of the applications, have
been increasingly complex and diverse. More IT resources are
deployed in enterprise infrastructures (the IT infrastructure
consists of hardware and software resources). At present, PaaS
platforms provide users with the fundamental services of
software development and research in the SaaS manner, in
order to satisfy their changing business requirements[1,2,3,4,5].
Under this situation, although PaaS applications can be used to
create enterprise applications in SOA architectures[6,7,8], there
are drawbacks in building business systems on PaaS
platforms[9]: (1) The requirement that integrates diverse types
of business into an enterprise management system cannot be
satisfied by the PaaS platforms; (2) The existing IT
infrastructures in enterprises cannot be fully protected or
utilized; (3) The task schedulers cannot fully utilized CPU
resources based on the characteristics of applications and CPU
architectures.

II. A MULTI-GRANULAR APPLICATION MANAGEMENT
PLATFORM

A. The Application Management Platform
The structure of the application management platform is

displayed in Fig.1. The platform integrates data in original
enterprise systems into new business systems through web
services, and implements the business logic by combining the
web services in SOA mode. Moreover, the platform is
encapsulated as independent business applications and exposes
development interfaces to the third party or business
developers. All data is stored in enterprise IT infrastructures.
On the platform, applications are scheduled by a parallel
scheduling engine. It is named AaaS (Application as a Service).

Fig. 1. Structure ofMulti-granular Application Management Platform

International Conference on Electronic Science and Automation Control (ESAC 2015)

© 2015. The authors - Published by Atlantis Press 136

B. The Multi-granular Application Model
On the AssS platform, all applications are defined to be

templates that can be generated by combining finer-grained
applications. Two types of applications are provided by the
system. One type is the standard applications that include
database operations (database connection pool management,
queries, updates, insertions and modifications), file operations,
inputs/outputs and software interfaces; the other type is
customized applications added by users based on their
development patterns and specifications. All applications in the
AaaS platform can be described by the following model.All the
logic structures of application flows can be easily described by
and stored in XML files.

Definition 1: Application Units (Apps): the smallest units
of applications in all types and granularities, i.e. the finest-
grained applications. An application unit is an executable
application with independent inputs and outputs on an AaaS
platform. AApps can be abstracted by a quintuple:

Apps ={App_Info, App_DInfo, App_Input, App_Output,
App_DSP}

Definition 2: Application Flow (AppF) is an application
group that is comprised of n (n≧1) application units (Apps) or
application flows (AppF) in a particular order. From the
definition, an application flow is allowed to recursively
combine application flows. An application flow can be
represented by a tuple:

AppF = <Vapp, Era>

where, Vapp={Vappi∣Vappi∈Setof(Apps, AppF), 1≦i≦n
or i=b or i=e } denotes an independent application set (called a
set of vertices). Vappb and Vappe are two virtual applications,
which represent the beginning and the end points in the
application flow;

Era={<Vappi ,Vappj>∣Vappi, Vappj∈Setof(Apps, AppF), 1
≦i≦n or i=b, 1≦j≦n or j=e, i≠j } describes a pair of
applications, indicating the relation of the caller and callee.

Definition 3: The granularities of application flows can be
classified into three categories by the complexity of the
application flows. The fine-grained application flows
(SG_AppF), medium-grained application flows (MG_AppF),
and coarse-grained application flows (BG_AppF) are defined
as follows:

(1) fine-grained application flows (SG_AppF) are the ones
that are made up of single application unit (Apps), i.e.
Vapp={Vappb ,Vapp1, Vappe }, Era={<Vappb, Vapp1>,
<Vapp1,Vappe>}, as shown in Fig.2(a).

(2) medium-grained application flows (MG_AppF) are the
ones that consist of n (n>1) application units (AppF), i.e.
Vapp={Vappb, Vapp1, Vapp2, ……Vappn ,Vappe },
Era={<Vappb, Vappi>, ……<Vappj, Vappe>}, as shown in
Fig.2(b).

(3) coarse-grained application flows (BG_AppF) are
complex application flows that are generated by recursively
combining application units (Apps) and application flows
(AppF), as shown in Fig.2(c).

Fig. 2. Multi-granular Application flows

III. THE PARALLEL SCHEDULING MODEL
On the AaaS platform, we design a two-level multi-core-

aware parallel scheduling model that includes (1) a workflow
scheduler in the master node and (2) a task scheduler in each
computing node.

The structure of the multi-core-aware parallel scheduling
model is displayed in Fig.3.

Fig. 3. structure of the multi-core-aware parallel scheduling model

(1) The workflow scheduler in the master node inserts
application invocation requests into the workflow queue and

Vapp1

(b)MG_AppF:Multi-Apps

Vappb Vappe

Vappb
Vappe

Vapp1

Vapp2

Vapp3

Vapp4

Vapp5

Vapp6

(a)SG_AppF:Single-Apps

(c)BG_AppF:Multi-AppF

Vappb Vappe
Vapp1

Vapp2

Vapp3

Vapp4

Vapp3eVapp31

Vapp32

Vapp33

Vapp3

Vapp3b

Vapp31

Vapp31b Vapp31eVapp311

:SG_AppF

:MG_AppF

Application Invocation Interfaces

A Workflow Queue

Scheduling
Sequence
Generator

Scheduling
Rules

Statuses of
Computing

Nodes

Scheduling Sequence
Dispatcher

Workflow Scheduler on
the Master Node

A Task Queue
Status

Monitoring
Processor
Affinity

CPU
Scheduling

Rules
CPU

statuses

Multi-thread
Executor CPU

Task Scheduler on a Computing Node

Computing
Node 2

Task Scheduler in
a Computing Node

Computing
Node 1

...

DB

Application
Information

API

A
P
I

API

137

then generates the scheduling configuration XML files through
the scheduling sequence generator (XML Code Generator)
based on the pre-defined "scheduling rules", "statuses of
computing nodes" and the application information (including
the information of last execution, the application type and the
execution time). Last, the workflow scheduler assigns the
applications to corresponding computing nodes through the
scheduling sequence dispatcher and sends responses to users.

Users can specify the scheduling rules to control the
scheduling of application invocation requests. If no scheduling
rule is set, a First-Come-First-Serve (FCFS) rule is applied as
default, which assigns applications to idle computing nodes in
order to keep the workload balance among the nodes.

The statuses of computing nodes include the architecture
information of CPUs and the utilization of computing resources
(CPU, memory, storage and network) on the node. These
information is collected by status monitors on computing nodes
and reported to the master node through heartbeat messages.
The heartbeat messages also indicate that the computing nodes
are in active statuses.

The application information module maintains the
performance characteristics of applications. Based on these
information, applications are classified into categories, and
assigned to the computing nodes, the characteristics of which
are similar with the performance characteristics of the
applications in order to increase the system throughput.

(2) The task schedulers on computer nodes receive
scheduling configuration XML files and application packages
(if the applications are not deployed on the computing nodes)
from the scheduling sequence dispatcher on the master node
and insert the tasks into task queues. The default FCFS
scheduling rule will be applied if no customized rule is
specified. Then, the corresponding threads of the applications
are bounded to particular CPU cores by using Processor
Affinity techniques in order to achieve higher performance.

The status monitor records the thread statuses of
applications on CPUs, which include CPU cycles, Cache miss
rate, the execution time of the thread, and the number of
instructions completed. With the help of these information, our
module can obtain the execution characteristics of the
applications and change the scheduling rules (policies) based
on the feedback of the application execution if necessary.

The multi-thread executor uses Processor Affinity
techniques, which bounds threads to specified CPU cores,
assigns threads to idle CPUs or CPU cores on alternative chips.
The executor is able to increase the CPU utilization by
reducing the number of application migration among CPU
cores, the waiting time and the Cache miss rate.

IV. EXPERIMENTS AND DISCUSSIONS
Hardware：① 2×Dell PowerEdge T720 (2×CPUs: Xeon 6-

core E5-2630 2.3G, 12 cores in total); ② 1×Inspur NF8560M2
(4×CPU: Intel Xeon 6-core E7-4807 1.86G, 24 cores in total);
③ 3×LenovoM4336 (1×CPU: Intel 4-Core i7-3770 3.4G), 12
cores in total。

Software: OS-Linux kernel 2.6.21; AaaS Platform-
JAVA1.6, JAVA RMI, JAVA Jna; Web-Tomcat6.5, Apache.

The objectives of experiments are to verify: ① the
feasibility of the multi-granular application on the AaaS
platform; ② the feasibility and effectiveness of the multi-core-
aware parallel scheduling model; ③ the feasibility and
effectiveness of the feedback mechanism in the parallel
scheduling optimization.

Test bed setting: one Lenovo M4336 is used as the master
node and a computing node; other servers are configured as
computing nodes. In our experiments, we use three clients to
simulate application requests and submit them to the master
node. The application requests include:

(1) 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝜋𝜋 = 4∑ (−1)𝑘𝑘

2𝑘𝑘+1
𝑛𝑛
𝑘𝑘=0 ,𝑛𝑛 = 107 , it is anSG_AppF

application with CPU-intensive Apps by definition 3. Thus, the
AppF type is called A.

(2)The calculation ofSuper π（n=108）is divided into M
(M <= the number of CPU cores in the system,M is set to be 6
in our experiments) tasks, in which (M-1) tasks calculate
(−1)𝑘𝑘/(2𝑘𝑘 + 1), (𝑘𝑘 = 1,2, . . . ,𝑛𝑛) in parallel and the Mth task
calculates the sum of the intermediate results. By definition 3,
this is an CPU-intensive application flow in MG_AppF type.
Thus, the AppF type is called B.

(3)WordCount is an application that counts the number of
words in files. In our experiments, we use a text file (the file
size is 128 MBytes) and the output of WordCount is written to
a specified file. By definition 3, WordCount is an I/O-intensive
application in BG_AppF type. Thus, the AppF type is called C.

(4)We calculate the multiplication of two matrices of order
N (N=103). By definition 3, the matrix multiplication is a CPU-
intensive and memory dependent application in MG_AppF type.
Thus, the AppF type is called D.

(5)We calculate Kmeans (K=10) of given n (n=104) points
in a two-dimensional space, and the result is written to an
external file. By definition 3, Kmeans algorithm is a CPU-
intensive, I/O-intensive and memory dependent application in
BG_AppF type. Thus, the AppF type is called E.

During the experiments, we use the following six
configurations: ①1×M4336 (1 node, 4 cores); ②2×M4336
(2 nodes, 8 cores);③3×M4336(3 nodes, 12 cores); ④3×
M4336 and 1×T720 (4 nodes, 24 cores); ⑤3×M4336 and 2
× T720 (5 nodes, 36 cores); ⑥3×M4336, 2× T720 and 1×
NF8560M2 (6 nodes, 60 cores). From the results of the
experiments, we observe that:

(1)The execution time of applications in type C (I/O-
intensive and memory dependent) is the greatest among that of
all applications in our experiments, which is a major factor that
the testing takes a long time.

(2)Based on the feedback information of applications and
the rule of "setting a threshold on the number of threads in each
core and setting a threshold on the number of threads in each
type", our parallel scheduling model can avoid the performance
degradation by assigning applications in the same type to

138

multiple computing nodes. The parallel scheduling model
achieves more than 35% performance improvement in all other
cases. The performance improvement becomes increasingly
significant (over 80%) as the number of applications grows.
Take an experiment for example, 8 applications in type C were
waiting on a computing node, and the system took 536 seconds
to complete these applications. If these applications can be
assigned to two computing nodes in a balanced manner, they
could be completed in 47 seconds, only one eleventh of the
execution time in the previous case.

(3)A maximum value is set as a threshold to limit the
number of threads on a node. The value of the threshold
depends on the number of CPU cores on the node. Before
reaching the threshold, the system performance linearly
increases with the number of threads. But if the number of
threads exceeds the threshold, the system performance nearly
keeps unchanged. Even when the number of threads hits
another higher threshold, the computing node will enter a
"dead" state. There is a "dead" threshold on the number of
applications in each type on a computing node. The value of
the "dead" threshold depends on the number of CPU cores,
memory and I/O. For example, the "dead" threshold of
applications in type C on an M4336 node is 9.

V. CONCLUSION

In cloud computing environments, the requirements on big
data processing and application services have become more
complex and diverse. In this paper, we proposed to create a
multi-granular application layer (AaaS) and develop an
application management platform (AaaS platform) between
PaaS and IaaS in the paper. Moreover, we define an application
model and present a parallel scheduling model and its policies.
From the definitions, fine-grained application units (Apps) can
be combined to create multi-granular applications in the AaaS
platform. These applications can be scheduled by a multi-core-
aware parallel scheduling model, which not only increases the
system flexibility and applicability, but also improves the
resource utilization of the fundamental infrastructure under
fine-grained resource allocation. From the experimental results,

we observe that the scheduling model can appropriately assign
applications to computing nodes in a balanced manner, fully
utilize the CPU resources on computing nodes and coordinate
the collaboration between computing nodes, CPUs on a
computing nodes and CPU cores for higher system
performance and throughput.

ACKNOWLEDGMENT
This projectis supported by the Funds of Core Technology

and Emerging Industry Strategic Project of Guangdong
Province (Project No.: 2011A010801008, 2012A010701011,
2012A010701003); Guangdong Provincial Treasury Project
(Project No.: 503-503054010110), Technology and Emerging
Industry Strategic Project of Guangzhou(Project No.:
201200000034).

REFERENCES

[1] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J].
Communications of the ACM, 2010, 53(4): 50-58.

[2] Cusumano M. Cloud computing and SaaS as new computing
platforms[J]. Communications of the ACM, 2010, 53(4): 27-29.

[3] Kang S, Kang S, Hur S. A design of the conceptual architecture for a
multitenant saas application platform[C].Computers, Networks, Systems
and Industrial Engineering (CNSI), 2011 First ACIS/JNU International
Conference on. IEEE, 2011: 462-467.

[4] Weissman C D, Bobrowski S. The design of the force.com multitenant
internet application development platform[C].SIGMOD Conference.
2009: 889-896.

[5] Jin H, Ibrahim S, Bell T, et al. Cloud types and services[M]. Handbook
of Cloud Computing. Springer US, 2010: 335-355.

[6] Azeez A, Perera S, Gamage D, et al. Multi-tenant SOA middleware for
cloud computing[C]. Cloud computing (cloud), 2010 ieee 3rd
international conference on. IEEE, 2010: 458-465.

[7] Pathirage M, Perera S, Kumara I, et al. A multi-tenant architecture for
business process executions[C]. Web services (icws), 2011 ieee
international conference on. IEEE, 2011: 121-128.

[8] Jin H, Ibrahim S, Bell T, et al. Cloud types and services[M]. Handbook
of Cloud Computing. Springer US, 2010: 335-355.

[9] Lawton G. Developing software online with platform-as-a-service
technology[J]. Computer, 2008, 41(6): 13-15.

139

	Introduction
	A Multi-granular Application Management Platform
	The Application Management Platform
	The Multi-granular Application Model

	The Parallel Scheduling Model
	Experiments and Discussions
	CONCLUSION
	Acknowledgment
	References

