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Abstract—Firefly algorithm (FA) has been recently proposed 
as a stochastic optimization method and it is has so far been 
successfully applied in a variety of fields, especially for 
unconstrained optimization problems. FA as most population-
based algorithm is good at identifying promising area of the 
search space, but less good at fine-tuning the approximation to 
the minimization. A novel hybrid firefly algorithm (HFA) based 
on Rosenbrock’s local search method for constrained numerical 
and engineering optimization problem that relies on a feasibility-
based rule for constraint-handling. Good-point-set method was 
used to initiate individual position, which strengthened the 
diversity of global searching. The comparison results with other 
stochastic optimization algorithms demonstrate that HFA with 
the embedded local search technique proves to be extremely 
effective and efficient at locating optimal solutions. 

Keywords—firefly algorithm; Rosenbrock’s local search; 
constrained optimization; engineering application 

I.  INTRODUCTION 
Constrained global optimization problems are frequently 

appear in many science and engineering disciplines, such as 
welded beam design, tension/ compression spring design, 
pressure vessel design, and so on. The general constrained 
global optimization problem that we are interested in can be 
formulated as 
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where )(xf


is an objective function, ),,2,1( nixi = is the 
decision variables, 0)( =xg j



is the equality constraints, 
0)( ≤xg j



is the inequality constraints, il and iu are the lower 
bound and the upper bound of ix , respectively. 

During the past two decades, using meta-heuristic 
algorithms to solve constrained optimization problems has 
attracted a lot research interest, and a large number of modified 
meta-heuristic algorithms have been developed [1]. Firefly 
algorithm (FA) has been recently developed by Yang [2]. This 
algorithm is based on the behavior of firefly. FA has showed 
promising performance when applied to unconstrained 

optimization problems [3]. Conversely, within the area of 
constrained optimization problems, only a few papers have 
been published to date. Therefore, aim of this research is to 
show that FA can be applied to this kind of optimization 
problems as well. Although the FA is good at exploring the 
search space and locating the region of global minimum, it is 
slow at exploiting the solutions. Thus, an effective hybrid 
firefly algorithm is proposed to solve constrained numerical 
and engineering application problems. 

II. FIREFLY ALGORITHM 
FA is a bio-inspired meta-heuristic algorithm for 

optimization problems. It was introduced in 2009 at Cambridge 
University by Yang [2]. FA was based on the idealized 
behavior of the flashing characteristics of fire- flies. FA uses 
the following three idealized rules: 

1) All fireflies are unisex so that one firefly is attracted to 
other fireflies regardless of their sex; 

2) The attractiveness of a firefly is proportional to its 
brightness and they both decrease with distance. For two 
flashing fireflies, the less bright one will move towards the 
brighter one. If there is no brighter one than a particular firefly, 
it will move randomly; 

3) The brightness or light intensity of a firefly is deter- 
mined by the value of the objective function a given problem. 

In FA, each firefly has a location ),,,( 21 nxxxX = in a n-
dimensional space and a light intensity I(x) or attractiveness 

)(xβ which are proportional to objective function )(xf . 
Attractiveness )(xβ and light intensity I(x) are relative and 
these should be judged by the other fireflies. Thus, it will vary 
with the distance ijr between firefly i and firefly j . Therefore, 
the attractiveness β of a firefly can be defined by 
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0
re κββ −=                                                                        (2) 

where 0β is attractiveness at 0=r , κ is light absorption 
coefficient, and r is the distance between any two firefly i and 
j at ix and jx , respectively is the Cartesian distance 

jiij xxr −= . 

For any given two fireflies ix and jx , the movement of 
firefly i is attracted to another more attractive (brighter) firefly j  
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is determined by 
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whereα is a significance factor of randomization parameter 
and Rand with uniform distribution )1,0(U is a random number 
obtained from uniform distribution. 

III. HYBRID FIREFLY ALGORITHM 

A. Initialization 
For population-based meta-heuristic algorithm, the good 

initial population plays an important role in searching the 
global optimum. Traditionally, FA generates initial population 
by uniform random sampling. Unfortunately, the random 
sampling technique often causes over-sampling in some areas 
and sparse sampling in others. As a result, the initial population 
generated from random sampling has low uniformity. However, 
the uniformity and diversity of population are critical to 
searching efficiency [4]. Therefore, in this research, we 
introduce using good point set method sampling technique to 
generate a good set of initial population of firefly algorithm. 
The basic idea of this approach is detailed description in [5]. 

B. Rosenbrock’s local search method 
The Rosenbrock method (RM) is a classical derivative-free 

local search technique with adaptive search orientation and size. 
The Rosenbrock local search technique is described in Fig. 1, 
where d1, d2,…,dn are n vectors forming the orthonormal basis 
and 1δ , 2δ ,… nδ  are n step lengths.  

Algorithm 1. Rosenbrock’s local search method 

Initialize the starting point x0, the step size ),,2,1( nii =δ , the initial 
orthonormal basis di(i=1,2,…,n), the step size adjustment factor α and 
β , the termination parameter 0>ε , 0=k . 
Repeat 

kxx =  
Repeat 

For i=1,2,…,n 

iidxy δ+=  
If y is better than x  

yx = ; ii αδδ =  
Else 

ii βδδ =  
End if 

End for 
Until at least one successful and one unsuccessful move in each 

direction, then set 1+= kk , xxk = , update the orthonormal 
basis di and reset iδ . 

End ( ε≤−+ |||||||| 1 kk xx  or εδ <min . 

Fig. 1. Pseudo code of the Rosenbrock’s local search method. 

The initial stage of the RM local search begins with the 
coordinate axes as the search directions. This continuous until 
there has been at least one successful and one unsuccessful step 
in each search direction. Once this occurs, the current stage 
terminates. If in one direction di an improvement is found, the 
step size iδ will be multiplied by 1>α ; if no improvement is 

found in the direction, the step size will be multiplied 
by 01 <<− β . The factor β can not only reduce the step size 
in that direction, but also cause the search change to the 
opposite direction in the next loop. The values of the step 
adjustment factors recommended by Rosenbrock are 

0.3=α and 5.0−=β  [6]. 

As soon as at least one successful and one unsuccessful 
move in each direction is carried out, the algorithm updates its 
orthonormal basis to reflect the cumulative effect of all 
successful steps in all directions. It also resets the step sizes to 
their original values. It is described as follows [6]: 
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where iλ is the sum of successful step sizes along di. 
Then the Gram-Schmidt orthonormalization procedure is 
adopted to update the search direction as: 
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After normalization, the updated search directions are: 
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C. Constraint handling approach 
It is necessary to note that FA is unconstrained optimization 

method that needs additional mechanisms to deal with 
constraints when solving constrained optimization problems. 
Motivated by [7], a feasibility-based rule is employed in this 
paper to handle constraints which consist of the following rules: 

Rule 1: Any feasible solution is preferred to any infeasible 
solution. 

Rule 2: Between two feasible solutions, the one having the 
better objective function value is preferred. 

Rule 3: Between two infeasible solutions, the one having 
the smaller sum of constraint violation is preferred. This sum is 
calculated as: 
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whereε is a small tolerant value (a very small positive value). 
Based on the above rule, objective function and constraint 

violation information are considered separately. Consequently, 
penalty factors are not use at all. 

D. Framework of proposed hybrid  algorithm 
After explaining the main elements of hybrid firefly 

algorithm, the framework of HFA is shown in Fig. 2. 

Algorithm 2. Hybrid firefly algorithm 

Objective function T
nxxxxxf ),,,(),( 21 



=  
Set algorithm’s parametersκ , 0β ,α  
Generation t =1 
Initialize a population of N fireflies ),,2,1( Nixi = by good point set 
While ( <t Maximum Generation) or (stop criterion) do 

For Ni :1= all N fireflies 
For ij :1= all N fireflies 

If (xj is chosen according to feasibility-based rules when we 
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compare xi and xj) then 
Obtain attractiveness which varies with distance r via 
exp[ 2rκ− ] 
Move firefly i towards j in all n dimensions 

Evaluate new solutions 
End if 

End for 
End for 
Rank the fireflies and find the current best 
Generate new solution by Rosenbrock’s local search algorithm as 
explained in section III for the current best 
Update the generation number 1+= tt ; 

End while 

Fig. 2. Pseudo code of the proposed hybrid firefly algorithm. 

IV. EXPERIMENTS AND COMPARISONS 
In this section, the performance of the proposed HFA is 

tested by solving several constrained benchmark functions and 
engineering applications. There are six parameters in the 
proposed method, and they are: population size N=50, 

0001.0=ε , 1=κ , 10 =β , and 2.0=α , we can set two fixed 
number of iterations 3000 and 1000 for constrained benchmark 
functions and engineering application problems, respectively. 

A. Constrained benchmark functions 
We apply the proposed HFA method to solve four test 

constrained optimization functions (denoted by g02, g03, g06, 
and g11) from [8]. The details expressions of four functions see 
[8]. For each test function, 30 independent runs are performed 
in MATLAB 7.0. To further verify the performance of HFA, 
the results of our algorithm are compared against five typical 
state-of-the-art algorithms from the literature, including the 
hybrid cuckoo search (HCS) algorithm [1], the stochastic 
ranking (SR) [8], the hybrid genetic algorithm with pattern 
search (HGA) [9], the biogeography-based optimization (BBO) 
algorithm [10], and the self-adaptive velocity particle swarm 
optimization (SVPSO) algorithm [11]. TABLE I summarizes 
the experimental results using the above parameters, showing 
the best, mean, worst objective function values and the 
standard deviations (st.dev) after 30 independent runs by 
differential approaches. 

TABLE I.  COMPARISON OF OUR ALGORITHM WITH OTHER FOUR 
APPROACHES FOR FOUR FUNCTIONS 

Problem/ 
Optimal 

Metho
d 

Best Mean Worst St.dev 

 HCS -0.803619 -0.762088 -0.640249 4.10E-02 
 SR -0.803515 -0.781975 -0.726288 2.0E-02 

g02/ HGA -0.611330 -0.556323 -0.526660 2.50E-02 
-0.803619 BBO -0.803557 -0.802774 -0.792576 2.72E-03 

 SVPSO -0.803443 -0.740577 -0.631598 4.20E-02 
 HFA -0.803582 -0.797061 -0.782472 7.70E-03 
 HCS -1.000000 -1.000000 -1.000000 1.00E-10 
 SR -1.000 -1.000 -1.000 1.90E-04 

g03/ HGA -1.000000 -1.000000 -1.000000 0.00E+00 
-1.000500 BBO -1.000 -1.000 -1.000 6.04E-16 

 SVPSO -1.0048 -1.0034 -0.9976 1.70E-02 
 HFA -1.000388 -1.000207 -1.000052 1.16E-04 

 HCS -6961.814 -6961.814 -6961.814 8.36E-06 
 SR -6961.814 -6875.940 -6350.262 1.60E+02 

g06/ HGA -6961.814 -6961.814 -6961.809 1.27E-03 
-6961.814 BBO -6961.814 -6961.814 -6961.814 4.55E-12 

 SVPSO -6961.814 -6961.814 -6961.814 0.00E+00 
 HFA -6961.814 -6961.814 -6961.814 3.88E-07 
 HCS 0.749999 0.750000 0.750000 3.70E-09 
 SR 0.750 0.750 0.750 8.00E-05 

g11/ HGA 0.750000 0.750000 0.750000 0.00E+00 
0.749900 BBO 0.750 0.750 0.750 0.00E+00 

 SVPSO 0.749 0.749 0.749 3.90E-07 
 HFA 0.749999 0.750000 0.750000 2.38E-06 

As shown in TABLE I, for problem g02, compare with 
HCS, HFA provided better “Mean”, “Worst” and “St.dev” 
values. The better “Best” value is obtained by HCS. With 
respect to SR, HGA and SVPSO, HFA found better results. 
Compare to the BBO, HFA reached similar results. For 
problem g03, with respect to HCS, SR, HGA and BBO, HFA 
obtained better results. For problem g06, compare with HCS, 
BBO and SVPSO, HFA obtained similar results. With respect 
to SR and HGA, HFA found better results. For problem g11, in 
compare with HCS, SR, HGA and BBO, HFA provided similar 
experimental results. With respect to SVPSO, HFA obtained 
worse results. 

B. Engineering application 
Weld beam design problem (as shown in Fig. 3), which 

has been often used as benchmark problem, was proposed by 
Eskandar [12]. In this problem, the aim is to find the minimum 
fabricating cost of the welded beam subject to constraints on 
shear stress (τ ), bending stress (σ ) in the beam, bucking 
load on the bar (Pb), end deflection of the beam (δ ). There 
are four design variables: )(),(),( 321 txlxhx and )(4 bx .  
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Fig. 3. Welded beam design problem. 

The mathematical formulation of welded beam design 
problem is stated as: 
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This problem has been used as a benchmark problem for 

testing the efficiency of numerous optimization methods [12], 
such as GA2, GA3, CAEP, CPSO, WCA, and FA [3]. The 
obtained statistical results using the reported optimizers and 
the proposed HFA are given in TABLE II. The comparisons of 
the best solutions among several reported algorithms are given 
in TABLE III. 

TABLE II.  COMPARISON OF STATISTICAL RESULTS FOR VARIOUS 
METHODS FOR WELDED BEAM DESIGN PROBLEM 

Methods Best Mean Worst St.dev 

GA2[12] 1.748309 1.771973 1.785835 1.12E-02 
GA3[12] 1.728226 1.792654 1.993408 7.47E-02 

CAEP[12] 1.724852 1.971809 3.179709 4.43E-01 
CPSO[12] 1.728024 1.748831 1.782143 1.29E-02 
WCA[12] 1.724856 1.726427 1.744697 4.29E-03 

FA[3] 1.7312065 1.8786560 2.3455793 2.68E-01 
HFA 1.724893 1.724946 1.725086 5.46E-05 

TABLE III.  COMPARISON OF THE BEST SOLUTION GIVEN BY 
DIFFERENTIAL OPTIMIZERS FOR WELDED BEAM DESIGN PROBLEM 

Variables CPSO[12] FA[3] GA3[12] HFA 

x1 0.202369 0.2015 0.205986 0.20573556 
x2 3.544214 3.5620 3.471328 3.47037213 
x3 9.048210 9.0414 9.020224 9.03661649 
x4 0.205723 0.2057 0.206480 0.20573598 

g1(x) -13.655547 -1.700E-04 -0.103049 -7.198E-04 
g2(x) -78.814077 -27.368227 -0.231747 -0.8760122 
g3(x) -3.35E-03 -0.0042000 -5E-04 -4.230E-07 
g4(x) -3.424572 -3.4243755 -3.430044 -3.4329470 
g5(x) -0.077369 -0.0765000 -0.080986 -0.0807356 
g6(x) -0.235595 -0.2355611 -0.235514 -0.2355407 
g7(x) -4.472858 0.50949507 -55.646888 -0.3346258 
f(x) 1.728024 1.73121 1.728226 1.724893 

In terms of statistical results, from TABLE II, compared 
with GA2, GA3, CPSO and FA, HFA obtained better “Best”, 
“Mean”, “Worst”, and “St.dev” results for welded beam 
design problem. With respect to CAEP and WCA, HFA 
provided better “Mean”, “Worst”, and “St.dev” results. The 
better “Best” values are obtained by CAEP and WCA. From 

TABLE III, the proposed HFA method detected the best 
solution with considerable improvement compared with other 
optimizers. 

V. CONCLUSION 
An effective hybrid firefly algorithm is proposed. Good 

point set method is adopted to obtain the sample points with 
better diversity of population. A Rosenbrcok’s local search 
technique is introduced to improve the best approximation 
found by the firefly algorithm. Numerical and engineering 
application examples are used to validate the performance of 
the proposed algorithm. The results demonstrate that for most 
problems the global optima are effectively obtained and 
comparison with other optimizers proves that the proposed 
algorithm can efficiently identify the global or near-global 
design optimum. 

ACKNOWLEDGMENT 
This work was financially supported by the National 

Natural Science Foundation of China (No. 61463009) and the 
Scientific Research Fund of Hunan Provincial Education 
Department (No. 14B097). 

REFERENCES 
[1] W. Long, X.M. Liang, Y.F. Huang and Y.X. Chen, “An effective hybrid 

cuckoo search algorithm for constrained global optimization,” Neural 
Comput. Appl. vol. 25, pp. 911-926, 2014. 

[2] X.S. Yang, “Firefly algorithms for multimodal optimization,” in 
Proceedings of International Conference on Stochastic algorithms: 
Foundation and Applications, pp. 169–178, 2009. 

[3] A.H. Gandomi, X.S. Yang and A.H. Alavi, “Mixed variable structural 
optimization using firefly algorith,,” Comput. Sturct. Vol. 89, pp. 2325-
2336, 2011. 

[4] R.L. Haupt and S.E. Haupt, “Practical genetic algrothms,” USA: John 
Wiley & Sons, 2004. 

[5] H. Liu, Z.X. Cai and Y. Wang, “A new constrained optimization 
evolutionary algorithm by using good point set,” in Proceedings of IEEE 
Congress on Evolutionary Computation, pp. 1247-1254, 2007. 

[6] R.M. Lewisa, V. Torczona and M.W. Trossetc, “Direct search methods: 
then and now,” J. Comput. Appl. Math. Vol. 124, pp. 191-207, 2000. 

[7] K. Deb, “An efficient constraint handling method for genetic algorithm,” 
Comput. Methods Appl. Mech. Eng. vol. 186, pp. 311-338, 2000. 

[8] T.P. Runarsson and X. Yao, “Stochastic ranking for constraine 
evolutionary optimization,” IEEE Trans. Evol. Comput. Vol. 4, pp. 284-
294, 2000. 

[9] L. Costal, I. Santo and E. Fernandes, “A hybrid genetic pattern search 
augmented Lagrangian method for constrained global optimization,” 
Appl. Math. Comput. Vol. 218, pp. 9415-9426, 2012. 

[10] I. Boussaid, A. Chatterjee, P. Siarry and M. Ahmed-Nacer, 
“Biogeography-based optimization for constrained optimization 
problems,” Comput. Oper. Res. Vol. 39, pp. 3293-3304, 2012. 

[11] H.Y. Lu and W.Q. Chen, “Self-adaptive velocity particle swarm 
optimization for solving constrained optimization problems,” J. Glob. 
Optim. Vol. 41, pp. 427-445, 2008. 

[12] H. Eskandar, A. Sadollah, A. Bahreininejad and M. Hamdi, “Water 
cycle algorithm – A novel metaheuristic optimization method for solving 
constrained engineering optimization problems,” Comput. Struct. Vol. 
110-111, pp. 151-166, 2012. 

 

162


	Introduction
	Firefly Algorithm
	Hybrid Firefly Algorithm
	Initialization
	Rosenbrock’s local search method
	Constraint handling approach
	Framework of proposed hybrid  algorithm

	Experiments and Comparisons
	Constrained benchmark functions
	Engineering application

	Conclusion
	Acknowledgment
	References




