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Abstract— Chebyshev Legendre Galerkin(CLG) method 

coupled with higher-order shear and normal deformable plate 

theory is proposed to analyze free and forced vibrations of 

laminated composite plates. The laminates of various boundary 

conditions, side-to-thickness ratios, and material properties are 

considered by present method and the numerical results agree well 

with their corresponding analytical solutions. High accuracy, 

stability and efficiency is illustrated by comparing the presented 

method with the other methods. 
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I. INTRODUCTION 

Laminated plate and shell structure is one of the most 

widely used in engineering structure, so analyze the static and 

vibration problems of this structure is particularly important. 

The common analysis theory is classical Kirchhoffthin plate 

theory (CLT), which ignores transverse shear effects, provides 

reasonable results for thin plates. However, it may not obtain 

accurate results for moderately thick plates. A development on 

the CLT is the first-order shear deformation theory (FSDT) 

such as the Reissner Mindlin moderately thick plate theory 

which gives reasons for transverse shear effects, but needs a 

shear correction factor. Higher-order shear deformation plate 

theories[1,2,3,4] use higher-order polynomials to express 

displacement components through the plate thickness and do 

not require shear correction factors. Among them, the 

higher-order shear and normal deformable plate theory 

(HONSDPT)[5,6,7]takes both the transverse normal and the 

transverse shear deformations into account and uses Legendre 

polynomialsas basis functions. Prominent characteristics of the 

theory include the satisfaction of natural boundary conditions 

prescribed on both the top and the bottom surfaces of the plate, 

and computations of the transverse normal and the transverse 

shear stresses directly from the plate equations rather than by 

integration through the thickness of the three-dimensional 

balance of linear momentum. In the HOSNDPT, the three 

components of displacement are expanded in the thickness 

direction and terms up to the same degree(the polynomial basis) 

in the thickness coordinate are retained. In the compatible 

HOSNDPT, three-dimensional Hookes law is used to derive 

the constitutive relations for various kinetic variables in terms 

of the kinematic variables. The compatible HOSNDPT gives 

more detailed constitutive relations to bring new expressions, 

and the novel forms can shorten the time of calculation in 

exceptional circumstances. For the same order of the plate 

theory, the compatible HOSNDPT gives results of transverse 

normal and transverse shear stresses that are closer to their 

analytical values than the original HOSNDPT’s. However, the 

latter is easier to implement in programming. The compatible 

theory has been used for analyzing static and dynamic 

deformations of isotropic homogeneous[5], functionally 

graded (FG) thick plates[8,9].  
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Finite element method (FEM) and boundary element method 

(BEM) are two common numerical methods. In FEM, 

construction of C1 conforming finite element approximation 

causes severe difficulties in variational formulations of thin 

plate model. The need of higher grid quality and density also 

increases the workload and complexities for problems of 

material inhomogeneity. As a result, the numerical solutions 

give the complete three dimensional displacement for the 

cross-section. In BEM, it is quite hard to procure the 

fundamental solutions for FGM problems. Spectral methods 

are one of the big three technologies (involved the finite 

difference method in 1950s, the finite element method in 

1960s and the spectral method in 1970s) for the numerical 

solution of PDEs. For spectral methods, some of the ideas are 

as old as interpolation and expansion, and more specifically 

algorithmic developments arrived with Lanczos as early as in 

1938 and with Fox, Clenshaw and others in the 1960s. If ones 

wants to solve an ODE or PDE to high accuracy on a simple 

domain and if the data defining the problem as smooth, the 

spectral methods are usually the best tool. They can often 

achieve ten digits of accuracy where a finite difference or 

finite element method would get three or four. They demand 

less computer memory than the other methods. The spectral 

collocation method is the most popular form of the spectral 

methods. It is very easy to implement, in particular for 

one-dimensional problems, even for very complicated 

nonlinear equations, and generally leads to satisfactory 

resultsas long as the problems process sufficient smoothness. 

However, the spectral collocation method needs the 

equilibrium equations of the problem. Spectral-Galerkin 

method overcomes the difficulty by involving the weak form 

of the equations and retains its high accuracy and high stability. 

The main advantage of the Chebyshev-Galerkin method is that 

the discrete Chebyshev transforms can be accelerated by using 

FFT （ Fast Fourier Transformation ）  in 
20( log )n n  

operations. However, the Chebyshev-Galerkin method leads to 

non-symmetric and full stiffness matrices. On the other hand, 

the Legendre-Galerkin method leads to symmetric sparse 

matrices, but the discrete Legendre transforms are 

expensive( 20( )n operations). In order to take advantages and 

overcome disadvantages of both the Chebyshev and Legendre 

polynomials, we use the Chebyshev-Legendre Galerkin 

method. For the high dimensional problems, the tensor product 

method is one of the most useful schemes for various PDEs. 

Carrera, Demasi and Fazzolari[10] analysis static and dynamic 

analysis of multilayered plates using the spectral methods with 

different plate theories in detail. High accuracy and spectral 

convergence are obtained by the spectral collocation method 

coupled with the tensor prod-uct method. Unforately, there is 

no mention on the higher order shear and normal deformable 

plate theory and the Chebyshev-Legendre Galerkin method in 

[10].  

The remainder of the paper is organized as follows. In 

SectionⅡ, Spectral-Galerkin methods is described. SectionⅢ, 

the compatible higher-order shear and normal deformable plate 

theory is introduced in detail. In SectionⅣ, a Galerkin weak 

form are studied for the laminated plates mechanics problems. 

In SectionⅤ, several examples are presented to show the 

computed natural frequencies of a simply supported square 

plate are found to match well with the corresponding analytical 

values. Finally, we end this paper with some conclusions in 

SectionⅥ. 

 

II. SPECTRAL-GALERKIN METHODS 

A.  Quadrature formulas 

We want to create quadrature formulas of the type 

         
0

( ) ( ) ( )
nb

n i
a

i

f x x dx A f p


          (1) 

If the choice of nodes
0 1, , , ,i nx x x x is made a priori, then in 

general the above formula is exact for polynomials of 

degree n. However, if we are free to choose the nodes
ix  , 

we can expect quadrature formulas of  the above form be 

exact for polynomials of degree up to 2 1n . 

  There are three commonly used quadrature formulas [11]. 

Each of them is associated with a set of collocation points 

which are zeros of a certain orthogonal  polynomial. Table1 is 

the three commonly used quadrature formulas , their 

Chebyshev polynomial and Legendre polynomial 

corresponding ( , )i ix   in [11]. 
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Table1 quadrature formulas and ( , )i ix   
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B.   Spectral-Galerkin methods 

If the basis function ( )kp x are polynomials, the spectral 

approximation is of the form
0

( ) ( )
nn

k kk
u x a p x


 , where the 

coefficients
ka can be determined form a given set of 

collocation points jx , and the function values ( )n

ju x . Since  

( )nu x  is a polynomial, it can be written in the form  

           
0

( ) ( ) ( )
n

n n

k

k

u x u x F x


                 (2) 

Where ( )kF x are called Lagrange polynomials which satify 

the Kronecker delta property ( )k j k jF x  . 

  If the Chebyshev polynoials are the basis functions, the 

spectral Galerkin method is also called Chebyshev Galerkin 

method. Different spectral methods have their advantages and 

disadvantages. We compare the Chebyshev Galerkin 

method(CG) with the Legendre Galerkin(LG) method. 

 operations Matrix 

CG 20( log )n n  Non-symmetric,full,stiffness 

LG 
20( )n  Symmetric,sparse 

Then, we consider the Chebyshev-Legendre Galerkin 

method. Each Chebyshev-Legendre process can be seen as two 

steps: 

(a).The process between the coefficients of the Chebyshev- 

Gauss-Lobatto nodes and the coefficients of its Cheby-shev 

expansion . This can be done in 
20( log )n n  operations by 

using FFT. 

(b). The relationship between the coefficients of the 

Chebyshev expansion and that of the Legendre expansion. 

Alpert and Rohklin have developed an 0( )n for this transform. 

Therefore, the total computational cost for the Chebyshev- 

Legendre process is of order
20( log )n n . Hence, it is most 

attractive for very larg n . 

Compatible higher-order shear and normal deformable plate 

theory Legendre polynomials Legendre polynomials 

0 1( ), ( ), , ( ),nP z P z P z are calculated for the basis 

 1, , , ,nz z on the interval  1,1 and the weight function 

is ( ) 1z  , the orthogonal property satisfying 

       
1

1

0,

( ) ( ) 2
,

2 1

n m

m n
P z P z dz

m n
n






 




             (3) 

Orthonormal Legendre polynomials calculated by the 

standardized for Legendre polynomials in the interval 

 / 2, / 2h h and expressions for the first seven orthonormal 

Legendre polynomials are 
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The standardized legendre polynomials satisfy the orthogonal 

conditions 

          
2

2

( ) ( ) , , 0 , 1 , 2 ,
h

i j i jh
L z L z d z i j


         (5)   

Where 
i j is the Kronecker delta function. 

The derivative of the i-th Legendre polynomial is a 

polynomial of degree 1i  , which can be linear represented by 
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the first 1i   order Legendre polynomials. Then, it can be 

represented as 

               
0

( ) ( )
K

i i j j

j

L z d L z


                (6) 

Where 
i jd  is constant. For 7K  , 
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0 39 0 91 0 143 0 0

15 0 5 3 0 3 15 0 195 0

ijd
h
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 
 
 
      
 
 
 
 
 
 

  (7) 

C.  Compatible Higher-order shear and normal deformable 

plate theory 

For a composite laminate under transverse load, establish 

the corresponding three-dimensional coordinate system o xyz , 

the region  is defined  

        0 ,0 , / 2 / 2x a y b and h z h         

A 3D displacement function on the surface and thickness 

direction can be separated, and the thickness direction can be 

expanded by orthogonal Legendre polynomial, the 

displacement can be expressed as: The displacement field is 

assumed to be of the form 

  

 

 

 

 

 
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   

u    (8) 

When 1K  , the plate theory is called higher-order theory. 

  The strain-displacement relationships are given as 
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

ε η ( )iL z  (9) 

Where 
iη is a 6( 1)K n vector, its components are defined 

according to the formula in [8]. 

D.  Constitutive relations for a laminates 

For an orthotropic material such as an unidirectional 

composite lamina, the constitutive relations C in the material 

coordinate system is 
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The constitutive relations C  in the global coordinate 

system for monodinic materials can be written as C = TCT , 

and transformation T is 

  

2 2
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sin cos 0 0 0 sin 2
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T   (11) 

in which   is the angle between the global coordinate system 

and the material system of each lamina. 

 

III.  DISCRETE SYSTEM EQUATIONS AND NUMERICAL 

IMPLEMENTATION 

Based on the principle of minimum potential energy and the 

HOSNDPT, we can obtain the Galerkin weak form 

         t

T T T

t

T T

d d d

d d

  
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ε σ u b u t

u u u u 0
     (12) 

equation (2 ) is used to approximate the displacements in the 

Galerkin procedure. Then, we can obtain 
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Substituting Eq.(9) and Eq.(13) into Eq.(12) leads to the 

following total potential energy in matrix form 
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Because of the arbitrariness of T

iU  and formula (14), we 

can obtain the system of algebraic equations with damping: 
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are as follows 

0

,

,

0

,0

,0

, ,

0 00 0 0 0 0 0

0 00 0 0 0 0 0

0 00 0 0 0

00 0 0 0

00 0 0 0

00 0 0 0 0 0

i K

j x

j y

j iij i j Ki

j ii j yj i j Ki

j ii j xj i j Ki

j y j x

dd d

dd d

dd d





 

  

  

 

 
 
 
 
 
 
 
 
 
 
 
 

 

The Rayleigh damping matrix C is defined as a liner 

combination of the K and C ,
1 2  C M K ,

1 2,  are 

constants independent to the frequency. 

A general solution of the free vibration equation can be 

written as 

                 i te  U W                     (16) 

where i  is the imaginary unit, t  is the time, w  is the 

eigenvector and   is the natural frequency. Substituting Eq. 

(16) into Eq.(15) with C = 0  and F = 0 , the natural 

frequency  of the plate vibration can be found by solving the 

following eigenvalue equation 

             2( K M ) W = 0                 (17) 

We use a background cell of 16 Gaussian points for the 

purpose of numerical integration to compute the stiffness and 

mass matrices. Furthermore, the boundary condition can be 

easily imposed as in the conventional FEM because of 

possessing the Kronecker delta property of the interpolation 

functions.  

The Newmark family of methods is used to numerically 

discrete the system of coupled second-order PDEs on time. 

The recursive relation among displacements U  , velocities U  

and acceleration U at time tn and
1n n tt t     are 

   
2

1 1( )
[(1 2 ) 2 ],

2

n n n n nt

t


       U U U U U     (18) 

       1 1[(1 ) ]n n n n

t      U U U U           (19)  

,  are constants. We set 0.25, 0.5   , then the 

Newmark method is equivalent to the constant average 

acceleration method and unconditionally stable . 

Rewriting Eq.(15) at time tn+1, and substituting from 

Eq.(18,19) give the following system of algebraic equations 

             1 1 1n n n  K U F                  (20) 

Where  

1 1

2

4 4
,

( )

n n n n

t t 

   K K M C  

1 1

2

4 4
( ) (2 )
( )

n n n n n n n n n

t t 

      F F M U U U C U U  

Having computed 1n
U  from Eq.(20), 1n

U and 1n
U are 

obtained from 

          

1 1

2

1 1

4 4
( ) ,

( )

( )
2

n n n n n

n n n n

tt

t





 

 

   

  

U U U U U

U U U U

    (21) 

 

IV.  NUMERICAL EXAMPLES 

To verify the accuracy and convergence of the present CLG 

method coupled with HOSNDPT, several numerical examples 

are studied on free vibrations and forced vibrations problems 

in this section. The numerical results for these examples are 

compared with the analytical solutions and some reference 

solutions. Square influence domains are used for calculations 

in the present paper with the average node distance dc = 3.  
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A.  Free vibration 

A rectangle laminated plate of length a, width b and 

thickness h subjected to a uniformly distributed load q are 

analyzed. non-dimensionalize natural frequencies. 

   
2

2

b

Eh

                    (22) 

The relative values of material properties are as 

material1: 
1 2 3 12 13 23: : 25:1:1, 0.25,E E E        

3

12 13 2 23 20.5 , 0.2 , 1 /G G E G E g cm       (23) 

material2: 
1 2 3 12 13 23: : 40 :1:1, 0.25,E E E        

        3

12 13 2 23 20.6 , 0.2 , 1 /G G E G E g cm       (24) 

In Table 2, the 2-layer 0 00 / 90  cantilever plate with 

various length-width ratio are analyzed to verify the validity of 

the HOSNDPT scheme coupled with the CLG method. The 

non-dimensionalized natural frequencies are presented in 

Table 2 for material1 are compared with the CLPT solutions in 

[12], the FSDT solutions in [12] and the TSDT solutions in 

[12]. It should be noted that the solutions of CLG is between 

these three methods and close to the TSDT solutions.  

 

Table 2: CLG solutions coupled with other solutions of non-dimensionalized 

natural frequencies for a cantilever plate( 0 0/ 0.1,0 / 90h a  ) 

Method CLPT FSDT TSDT CLG(K=1) CLG(K=3) CLG(K=5) 

b/a=1 2.625 2.533 2.561 2.139 2.133 2.129 

b/a=2 10.459 9.350 9.599 8.557 8.532 8.519 

b/a=3 23.378 18.849 19.833 19.255 19.197 19.167 

 

CLG solutions of non-dimensionalized natural frequency 

under different lamination schemes and side-to-thickness ratio 

are presented in Tables 3 and 4 for material1 and material2 , 

and are compared with the CLPT,FSDT solutions in [12]. 

 

Table 3: CLG solutions of non-dimensionalized natural frequencies under different 

schemes for the laminates 

h/a method 00  
000 0/90/0  00000 0/90/0/90/0  

0.2 

FSDT 8.909 8.766 9.215 

CLPT 14.750 14.750 14.750 

CLG(K=1) 9.4059 9.0904 9.6327 

CLG(K=3) 8.9643 8.1262 8.9934 

CLG(K=5) 8.9602 8.9934 8.8322 

0.1 

FSDT 12.452 12.227 12.633 

CLPT 15.104 15.104 15.104 

CLG(K=1) 12.7948 12.5267 12.8938 

CLG(K=3) 12.4631 11.7482 12.4767 

CLG(K=5) 12.4628 11.6180 12.3760 

0.02 

FSDT 15.077 15.055 15.067 

CLPT 15.223 15.223 15.223 

CLG(K=1) 15.1008 15.0805 15.1052 

CLG(K=3) 15.0768 15.0142 15.0762 

CLG(K=5) 15.0768 14.9998 15.0695 

 

Table 4: CLG solutions of non-dimensionalized natural frequencies under different 

lamination schemes for the laminated plate( / /  ) 

h/a method 

05  030  045  

Ne=2 Ne=6 Ne=2 Ne=6 Ne=2 Ne=6 

0.25 

FSDT 8.531 8.737 8.917 10.502 9.161 10.805 

CLPT 14.514 16.563 13.012 21.647 13.506 13.766 

CLG(K=1) 9.137 9.314 10.182 11.296 10.558 11.650 

CLG(K=3) 8.689 8.799 9.149 10.207 9.387 10.510 

CLG(K=5) 8.669 8.781 9.010 10.143 9.234 10.446 

0.1 

FSDT 14.179 14.840 12.681 18.226 13.044 19.025 

CLPT 17.500 18.819 14.031 23.165 14.439 24.611 

CLG(K=1) 14.828 15.352 15.156 19.019 15.821 19.951 

CLG(K=3) 14.397 14.843 14.194 17.842 14.657 18.615 

CLG(K=5) 14.387 14.839 13.916 17.785 14.323 18.548 

  Different boundary conditions also affect the natural 

frequency. Hence, the non-dimensionalized natural frequency 

under different boundary conditions and side-to-thickness ratio 

for material2 are presented in Tables 5 and 6,and are compared 

with the CLPT,FSDT, TSDT solutions in [12]. are shown that 

the results of the present method agrees well with the reference 

solutions. 

Table 5: CLG solutions of non-dimensionalized natural frequencies under different 

boundary conditions for the laminates( 00 90/0 ) 

h/a     method SSSS SSSC SSSF SCSC 

0.1 

FSDT 10.473 12.610 7.215 15.152 

CLPT 11.154 14.223 7.636 18.543 

TSDT 10.568 12.870 7.277 15.709 

CLG(K=1) 10.578 12.836 7.279 15.575 

CLG(K=3) 10.426 12.495 7.170 14.938 

CLG(K=5) 10.339 12.316 7.103 14.635 
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0.2 

FSDT 8.833 9.882 6.213 10.879 

CLPT 10.721 13.627 7.450 17.741 

TSDT 9.087 10.393 6.387 11.890 

CLG(K=1) 9.085 10.226 6.083 11.468 

CLG(K=3) 8.716 9.655 6.083 10.695 

CLG(K=5) 8.531 9.421 5.953 10.429 

 

Table 6: CLG solutions of non-dimensionalized natural frequencies under different 

boundary conditions for the laminates( 00 /   ) 

     method SSSS SSSC SCSC SSSF SFSC 

30 

FSDT 12.68 13.46 14.41 8.45 8.65 

CLPT 14.24 15.44 17.00 9.35 9.69 

CLG(K=1) 15.156 15.446 15.832 8.477 8.687 

CLG(K=3) 14.194 14.514 14.942 7.980 8.172 

CLG(K=5) 13.916 14.243 14.673 7.831 8.013 

45 

FSDT 13.04 14.23 15.63 7.13 7.52 

CLPT 14.64 16.75 19.48 7.79 8.48 

CLG(K=1) 15.821 16.216 16.867 7.398 7.789 

CLG(K=3) 14.657 15.161 15.936 6.900 7.322 

CLG(K=5) 14.323 14.831 15.593 6.766 7.181 

60 

FSDT 12.68 14.52 16.57 5.87 6.70 

CLPT 14.24 17.74 22.31 6.26 7.54 

CLG(K=1) 15.154 16.118 17.614 6.378 7.206 

CLG(K=3) 14.194 15.343 16.987 6.055 6.961 

CLG(K=5) 13.916 15.064 16.685 5.966 6.882 

 

B. Forced vibration 

We now consider the forced responses of the laminated 

plates. The relative values of material properties are as 

  2 5 , 1 ,a b c m h c m  
1 2 3 2: : 2 5 : 1 : 1 , 2 1 ,E E E E G P a   

12 13 2 23 20.5 , 0.2 ,G G E G E   12 23 13 0.25,      

6 38 10 / , 5tkg mm s      

The expression of load in this paper is
0( , , ) ( )q x y t q f t , 

here 0 1, ( )q f t has three schemes, 

• Accumulative load: ( ) 1, 0f t t   

• Pulse load: 
1 0 7000

( )
0 7000

t

t

t
f t

t





 
 


 

• Sinusoid load: 
1sin( / ) 0 7000

( )
0 7000

t

t

t t t
f t

t

 



 
 


 

Fig.1 shows the non-dimensionalized center deflection versus 

time for cross-ply laminates 0 00 / 90 under uniformly 

distributed accumulative load without the damping effect, and 

is compared with the Navier solutions[11] of Reddy. Similar 

results are presented for K = 1, K = 3 and K = 5, and the FSDT 

collocation method in [13] with theMQ function is compared. 

Results show CLG method much better than the FSDT-MQ in 

[13] does. 

The pulse loads and sinusoid pulse loads, are considered in 

Fig.2 and 3 for a 2-layer laminate 0 00 / 90 . The parameter 1t is 

taken as 7000
t  Under the action of pulse load, the CLG(K=1, 

3, and 5) are plotted in Fig.2. When t ≤ 7000μs, it makes 

harmonic vibration near the equilibrium position 1.8w   due 

to the external force
0q . when t > 7000μs, it makes harmonic 

vibration near the equilibrium position 0w   for the 

deficiency of external force. Under the sinusoid pulse loads, 

the CLG(K=1, and 3) and the absolute error between them are 

considered. When t ≤ 7000μs, it is no longer make harmonic 

vibration due to the influence of external force 0 1sin( / )q t t , 

when t > 7000μs, it is still make harmonic vibration near the 

equilibrium position 0w   for the deficiency of external 

force. As can be seen in Fig.3, there is a good agreement 

between the different K of the present CLG method. 

 

 
Figure 1: Center deflection versus time for different orders ( 00 90/0 ) under 

uniformly distributed accumulative load 
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Figure 2: Vibrations curve under pulse load 

 

Figure 3: Vibrations curve under sinusoid pulse loads 

 

V. CONCLUSIONS 

CLG method with higher-order shear and normal 

deformation theory for the vibration of laminated plates was 

proposed. Several well-known plate and laminate benchmark 

examples were also solved. The obtained results, and the 

experience acquired along the development of this work, 

permit to conclude the following: 

(a) The present method is more stable and accurate then the 

MLPG. 

(b) In general, the convergence rate is high and the final 

converged solution is always very close to the considered 

problem analytical solution. 

(c) The scheme consider all the six stresses and it is a true 3D 

method.  

The CLG method with higher-order shear and normal 

deformation theory proved to be an efficient and alternative 

method in the dynamic analysis of composite laminates. 

References 

[1] Lo KH, Christensen RM, Wu EM. A higher-order theory of plate 
deformation. Journal of Applied Mechanics 1997;44:663-76. 

[2] Phan ND, Reddy JN. Analysis of laminated composite plates using a 
higher-order shear deformation theory. International Journal for 
Numerical Methods in Engineering 1985;21: 2201-19. 

[3] Batra RC, Vidoli S. Higher-order piezoelectric plate theory derived 
from a three-dimensional variational principle. AIAA journal 
2002;40(1): 91-104. 

[4] Kocak S, Hassis H. A higher order shear deformable finite element for 
homogeneous plates. Eng Struct 2003;25:131-9. 

[5] Batra RC, Aimmanee S. Vibrations of thick isotropic plates with higher 
order shear and normal deformable plate theories.Computers and 
Structures 2005;83:934-55. 

[6] Qian LF, Batra RC, Chen LM. Elastostatic deformations of a thick plate 
by using a higher-order shear and normal deformable plate theory and 
two meshless local Petrov-Galerkin (MLPG) methods. Computer 
Modeling in Engineering and Sciences 2003;4(1): 161-176. 

[7] Xiao JR, Gilhooley DF, Batra RC, et al. Analysis of thick composite 
laminates using a higher-order shear and normal de-formable plate 
theory (HOSNDPT) and a meshless method. Composites Part B: 
Engineering 2008;39(2): 414-427. 

[8] Qian LF, Batra RC, Chen LM. Static and dynamic deformations of thick 
functionally graded elastic plate by using higher-order shear and normal 
deformable plate theory and meshless local Petrov-Galerkin method. 
Composites Part B: Engineering 2004;35:685-97. 

[9] Qian LF, Batra RC. Transient thermoelastic deformations of a thick 
functionally graded plate. Journal of Thermal Stresses 2004;27:705-40. 

[10] Carrera E, Demasi L, Fazzolari F. Spectral methods for static and 
dynamic analysis of multilayered plates. 2010. 

[11] Lloyd N.Trefethen.Spectral methods in MATLAB.SIAM press;2000. 

[12] Reddy JN. Mechanics of laminated composite plates. CRC press;1996. 

[13] Chen FJ, Wei CZ, Yao LQ. Free vibration analysis of laminated 
composite plates by local moving Kriging meshless method. Journal of 
Applied Mechanics 2013, 30(4): 559-564. 

 

257




