
The Design and Implementation of Android

Database Service Framework based on Adapter

Pattern*

Yiliang Xing

Software Engineering Department

Hainan College of Software Technology

Qionghai City Hainan Province,China

xylpaper@163.com

Yun Pei

Software Engineering Department

Hainan College of Software Technology

Qionghai City Hainan Province,China

Corresponding author py_yunpei@163.com

Abstract—Providing database service to android script app

can reduce complexity of data management.This paper designs

and implements an android database framework based on the

adapter pattern. Interface of the framework provides a unified

database programming method for PHP script. Adapter of the

framework uses android database native service to provide
service for the implementation of this method. Adaptee of this

framework is a proxy for android database native service. The

core code of the framework is also given in this paper. Practice

verifies the adaptation, the loose coupling and the expansibility of

the framework.

Keywords—database; android; php; framework; adapter

pattern

I. INTRODUCTION

Open source PFA (PHP for Android) [1] is a PHP
interpreter running on Android system, which allows PHP

applications running on the Android system. Although PFA
supports PHP basic syntax, but the PHP application can not

directly access Android native services, it needs to access the
services through SL4A(Scripting Layer for Android)

[2][3]component. SL4A is a software system for the

acquisition, development and maintenance of Google
Corporation. SL4A provides Android native services for PHP ,

javascript , python and so on , which include telephone, voice,
sms, wifi, intentions services , ect . SQLite[4] is Android native

database service, but because the SL4A does not support the
service, and therefore scripts relying on SL4A is severely

limited impact in data access. SQLite is an embedded relational

database engine, which provides data storage service for
mobile devices with very limited computing power. SQLite is

different from MySQL and Oracle and other professional
database, SQLite database is a file, from the point of view, the

operation of the SQLite is just a more convenient file operation.
SQLite provides two kinds of data operation mode. One is the

command line, SQLite contains a command line called sqlite3,

which allows users to manually enter and execute SQL
commands for the SQLite database. The other is a class library,

which allows the application to be developed by Tcl, PHP, C#,
Java and so on to use SQLite database. The former has the

advantage that the SQLite data operation can be realized
without the use of the third party components, but the problem

is that the interface of the command interface is usually not fit

for applications of PHP and other languages. The advantages of
the latter is with good scalability, suitable for the development

of a variety of language, but insufficient is according to
different development language transplantation third-party

components to the Android platform, and its implementation is
difficult. This paper discusses the design and implementation

of the SQLite database system based on the design pattern of

the adapter, which makes it suitable for PHP application in
Android platform. This paper is of great significance to open

up Android native database service.

II. DATABASE FRAMEWORK BASED ON ADAPTER PATT ERN

A. Adapter Design Pattern

The concept of pattern derived from city planning and
architectural design works of the architectural design master

Christopher Alexander. After a large number of observations,

Alexander found that in a specific building, those outstanding
structures have their similarities, which are usually in order to

solve the same problem. A lexander defined pattern as a
solution to a problem in a certain context. In software

development, there is also a situation that similar problems are
repeated, and these problems can be solved by the same

method. As long as these solutions are summed up to form a

"pattern", then in the face of similar problems, we can use the
existing "pattern" to solve the problems. Design Pattern was

originally introduced into the field of software design by
Gamma Erich and Helm Richard and so on[5]. Design pattern

is a set of code design experience of classification that is used
repeatedly, most people know. Adapter pattern is mainly to

solve the the problems that interface of an old system can not

meet the needs of a new system, old interface will be needed,
through adapter transferred to support new interface. In other

words, adapter pattern is mainly used in some of the existing
system that can continue to play a role in the service for the

new system,but there is inconsistent interface between the old
and the new system. Adapter pattern is very useful for the

legacy code reuse and libraries migration. Adapter pattern can
be defined as that one interface is converted to another

interface to meet customer requirements, which are not

compatible with each other.

According to the different relationship between the adapter

and adaptee, the adapter pattern can be divided into two kinds

International Conference on Electronic Science and Automation Control (ESAC 2015)

© 2015. The authors - Published by Atlantis Press 258

field1|field2

user1|pwd1

user2|pwd2

user3|pwd3

user4|pwd4

of object adapter and class adapter . In the object adapter

pattern, the relationship between adapter and adapter is
associate relationship. In the class adapter pattern, the

relationship between adapter and adapter is inheritance (or
implementation) relationship. However, with the

implementation of "mult i inheritance", the high coupling
degree is brought, it is generally not recommended to use the

class adapter. Object adapter pattern structure is shown in Fig.1.

It shows that the pattern structure contains four roles of Target,
Adapter, Client, and Adaptee. Client is the customer, which is

the terminal object of consumer services. Target is a abstract
target, which maybe be an abstract class or interface or a

specific class, to meet needs of the Client. Adapter is a class
that can convert one interface to another interface, as a

converter, Adaptee and Target are well matched by Adapter,
Adapter is core of the adapter pattern. In the object adapter, a

target is associated with an Adaptee object by adapter which

inherits Targe and tie Adaptee. Adaptee ,which is an adapted
role, is a class that defines an existing interface, which is

generally a concrete class. Adaptee contains business methods
and in some cases there may be no source code for the adapter

class.

Fig. 1. Object adapter structure diagram

B. Database Framework Design and Implementation

The architecture of the Android SQLite3 service framework

based on the adapter pattern and PHP application access

SQLite3 database with the framework is shown in Fig.2. It
shows that the architecture is composed of PHP Android

application, IDB database interface, SQLite3Adapter class and
SQLite3Adaptee class. PHP Android application is the

database terminal user and it achieves data CRUD(Retrieve,
Update, Delete and Create) operation by the IDB database

interface. IDB database interface provides unified standard

interface PHP Android applications and through this interface
PHP Android applications can conveniently realize the data

CRUD operations. At the same time, IDB database interface
achieves the loose coupling of application and adapter.

SQLite3Adapter class has two important role. The first one is
to convert the IDB database interface operation to the Android

SQLite3 command and realizes the data CRUD operations by

the command. This conversion is the key for interface adapter.
The second is to convert the operation result of the SQLite3

command to IDB specified data type and so as this simplifies
the PHP Android application data programming. Class

SQLite3Adaptee agents real SQLite database system. The class
contains a method named sqlite3 that docks the sqlite3

command for the database administrator and accepts arguments
to do something on database. The method provides 3

parameters, the first parameter represents the database file, the

second parameter represents the SQL statement, and the third

argument represents the data output file. Default output format

of sqlite3 command line is the "list", in list mode, each query
record is written in a row and a separator character is separated

from the column. By default, the separator character is the pipe
symbol "|". List format is shown in Fig.3. It shows that the first

line is record fields, which are field1,and field2, other lines are
data item values of fileds, the value of field1 are user1, user2,

user3, user4 and the values of field2 are pwd1,pwd2,pwd3,

pwd4.

Fig. 2. Architecture of PHP Android App access SQLite3

Fig. 3. SQLite3 command output format

Interface IDB defines the CRUD operation. IDB is written
as the following.

interface IDB

{

 function close(); // close database

 function open($filename); //open database file

 function drop($query); //drop database or table

 function update($query); //update data

 function delete($query); //delete data

 function insert($query); //insert data

 function query($query); // query data

}

The aim of Class SQLite3Adaptee is to agent sqlite3
command and assemble sqlite3 command with the parmeters of

the database file, SQL statements and output file. The
command format is "SQLite3 -header database SQL statement

output file", the command will first open the database file, then
execute SQL statements in the file to achieve the CRUD

operations, finally convert and save the operating results to the

output file. The variables of $dbfile, $query and $output in
PHP code represent the database file, SQL statements and

output files. The core code of SQLite3Adaptee is shown as the
following.

class SQLite3Adaptee

259

{

 function sqlite3($dbfile, $query , $output)

 {

 $cmd= " sqlite3 -header $dbfile \" ".$query." \" > $output ";

 shell_exec($cmd);

 }

}

Interface IDB is implemented by Class SQLite3Adapter,

which converts the client interface to the SQLite database
system interface. Function named open is to open a database

file. If the database file does not exist, it will be created and the
default database table named test will be generated. Function

named query is to query records of database and s tore the
records to an output file, the output file is the "list" format. To

facilitate the application, the list format specification is
required to be transformed into a two dimensional array that it

uses rows to express records and uses columns to represent

fields. The concrete realization process is that firstly the proxy
class SQLite3Adaptee will query records of a database and

store them to the output file, secondly class SQLite3Adapter
will separate the records from the output file in a line and

separate fields from the records, finally the separated fields will
be heavily composed of a two dimensional array. The functions

of insert, update, delete, and drop are to insert, update, delete

records of a database and drop a database, the core process to
achieve the functions are the same, the process is that the

functions will make the three parmeters of database files, SQL
statements and output file passed by application layer to a SQL

statement and pass the statement to class SQLite3Adaptee to
execute. Usually, the functions are used for executing the query

on the specified database. Class SQLite3Adapter key code is

shown below.

class SQLite3Adapter implements IDB

{

 var $SQLite3; //SQLite3Adaptee object

 var $filename; //Database file

 // SQLite3 query result cache file

var $cachefilename="/mnt/sdcard/sl4a/scripts/cacheQuery.txt";

 function __construct()

 { //Initialize SQLite3Adaptee object

 $this->SQLite3=new SQLite3Adaptee();

 }

 public function open($file)

 {

 $this->filename=$file;

 if (!file_exists($file))

 { /* if database file does not exist, database file will

be created and the default table test will be generated */

 $output=$this->cachefilename;

 $query="create table test('name')";

 $this->SQLite3->sqlite3($file, $query, $cache) ;

 }

 }

 public function close()

 {

 $this->filename="";

 }

 /* Function named query is to query records and $query

is SQL statement. Function will return a two-dimensional array.
The first record of the array represents fields, other records

represents data */

 function query($query)

 { //1. Firstly execute query commands

 $this->SQLite3->sqlite3($this->filename, $query,

$this->cachefilename) ;

 //2. Secondly standardized query results

 //2.1 Read out the query results

 $result=shell_exec("cat $cache ");

 //2.2 Separate the records from results

 $resultArray=explode("\n",$result);

 //2.3 Delete the last record(blank)

 array_pop($resultArray);

 foreach ($resultArray as $key=>$value) {

 //2.4 Traversal records

 if ($key==0)

 {

 //2.5 If the record is the first record, fields are isolated.

 $columns=explode("|",$value);

 continue;

 }

 else

 {

//2.6 If the record is not the first record, data items are isolated.

 $colDataSet=explode("|",$value);

 foreach($columns as $colKey=>$colValue)

 { // field=>data item

 $table[$key-1][$colValue]=$colDataSet[$colKey];

 }

 }

260

 }

 return $table;

 }

 /* Function named insert is to insert records, $query is
SQL statement. */

 function insert($query)

 {

 $this->SQLite3->sqlite3($this->filename, $query,

$this->cachefilename) ;

 }

/* the process of delete, create, update and drop is the same,
specific code is omitted. */

}

III. EXPERIMENT AND CONCLUSIONS

The framework of this paper is tested and passed by black
box testing and applied in a natural rubber industry economic

data system, which is running in the environment of
Android+SL4A+PFA+SQLite3. The database of the rubber

system contains eight pieces of data table, records of more than

12,000 records. The file size of the database is 806k. Practice
shows that the method can effectively solve the interface

adaptation problem between application and database. As the

method is based on the adapter structure, it can be applied to

the database system, and the application code can be reused
without modify ing the application code. Because the method

can change the new function of SQLite3Adaptee, so the
method has good expansibility.

The Android database service framework based on adapter
pattern can enable PHP applications to access SQLite

effectively ,which is Android native database service . It has

the characteristics of simple, easy, loose coupling and
scalability. The next step work is to extend the framework to a

variety of scripting languages.

ACKNOWLEDGMENT

This work was financially supported by the Hainan Natural
Science Foundation (20156237).

REFERENCES

[1] irontec. (2015,January). PHP for Android project(PFA)[Online].
Available: http://phpforandroid.net/.

[2] SL4A API Help. (2015,June 10). SL4A API Help[Online]. Available:
http://www.mithril.com.au/android/doc/index.html.

[3] P. Ferrill , Pro Android Python with SL4A, Berkeley: APress, 2011.

[4] SQLite. About SQLite. http://www.sqlite.org/about.html.

[5] Erich Gamma, Richard Helm, Ralph Johnson, John Vissides. Design
Patterns: Elements of Reusable Object-Oriented Software. New Jersey:
Addison-Wesley Publishing Company, Inc. ， 2002.

261

