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Abstract—In the paper, we analyze the robot flocking 
algorithms under virtual leader-follower model with 
communication noise. Under virtual leader-follower model, robot 
flocking algorithm can avoid diverging, but the performance of 
robot flocking algorithm with communication noise often 
degrades. In the paper, we analyze the impact brought by 
communication noise on the robot flocking, and simulations are 
done. Results show that the performance of robot flocking 
depends on the communication noise. Smaller is the 
communication noise, better is the performance of robot flocking 
with communication noise.  
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I.  INTRODUCTION  

In nature, based on local information, birds, bees, and fish 
often flock together in groups to find the source of food or 
avoid predators. This natural phenomenon of flocking has been 
studied in the past years [1-7]. Reynolds proposed the Boid 
model in [1] about the phenomenon of flocking.  

The problems of flocking have also attracted many 
researchers in many fields. Viscek et al are the first groups of 
physicists who studied flocking from a theoretical perspective. 
Viscek in [2] propose a model based on statistical mechanics, 
the model only considers flock centering rule of Boid model. 
Jadbabaie simplify the Viscek model by linear approximation 
in [3]. In [4], the theoretical framework for design and analysis 
of distributed flocking algorithms was proposed. 

For the limited communication radius and other reasons, 
the flocking algorithm is easy to diverge. In order to solve the 
problem, Olafi-saber in [4] proposes leader-follower model to 
void diverging. In the leader-follower model, every agent can 
receive the information of the virtual leader. As an extension 
of the flocking algorithm in [4], flocking of agents with a 
virtual leader in case of a minority of informed agents and 
varying velocity of virtual leader was presented in [7]. 

Recently, the flocking algorithm [1-7] is applied in robot 
field, robots communicate with each other, and every robot 
only can receive the information from the nearby robots. For 
the limited communication radius, not all robots can receive the 
information from the nearby robots, so the robots are easy to 
diverge.  In order to solve the problem, the robots flocking 
based on leader-follower model is supposed. Under the leader-
follower model, the performance of the robots flocking 

improves.  

For robots flocking, in the course of utilizing the 
information of the nearby robots, there is often communication 
noise, robots flocking with communication noise is easy to 
diverge, meantime, there is noise for every robot to receive the 
information of virtual leader, and the impact of noise on robots 
flocking has to be considered. 

In the paper, we consider robots flocking with 
communication noise among agents under leader-follower 
model. The communication noise is supposed to be zero-mean 
Gaussian white noise, and irrelevant and independent in time 
and spatial, meantime, we suppose that all robots can receive 
the information of virtual leader. The performance of robots 
flocking with noises is analyzed, and simulations are done.  

The remainder of this paper is organized as follows: we 
introduce some necessary notations about graph theory and the 
robots flocking. We explicitly analyze the performance of the 
robots flocking with communication noise. Examples and 
simulation results are provided and conclusions are 
summarized in the end. 

II. FLOCKING ALGORITHM UNDER VIRTUAL LEADER 

Firstly, we introduce some notations and concepts about 
distributed consensus and distributed flocking algorithm. A 
graph ),( EVG  represents the communication topology in a 
networked multi-agent system with n agents, where V is a set 
of vertices, and E is a set of edges. Each edge in the graph is 
denoted by Eji ),( , where Vji , . An adjacency matrix for 

graph G  is denoted as NNijaA  }{ , 

where
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A continuous-time first-order consensus algorithm in [8] 
can be represented by: 
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The collective dynamics of the group of agents can be 
written as: 

)()( tLxtx                                                (2) 

where T
n txtxtxtx )](,)(),([)( 21  , and ( )

i
x t  is denoted by the 

state of agent i  

Based on Boid model’s three rules, we consider the velocity 
and position of agents, the dynamics of the agent i can be 
written by: 

i i
q p ,  

i i
p u                                               (3) 

Where m

i
q R is denoted by the position of agent i , and 

m

i
p R  is denoted by the velocity of agent i , and m

i
u R is 

denoted by the control input of agent i .When agent move, the 
communication topology changes, we define the 
communication topology as ( )G t  in time t , and the 

corresponding Laplacian matrix is ( )L t , obviously, for the 

undirected topology, ( )L t  is a positive semi-definite 

matrix .when graph ( )G t is undirected and connected, then the 

second Minimum eigen-value of matrix ( )L t , i.e., 

2
( ( )) 0L t  . 

For leader-follower model, considering agent i , the control 
input is: 

g d

i i i i
u f f f                                                (4) 

where g

i
f is denoted by a gradient term, 

and ( )
i

g

i q
f V q  , where ( )V q  is the collective potential  

function. The item d

i
f is a velocity consensus/alignment term 

that acts as a damping force, and 
i

f  is a navigational feedback 

due to a group objective. Examples of a group objective are 
moving towards a destination (migration) or flocking out of a 
crowded space with few exits. The collective potential 
function ( )V q of a group of agents is a non-negative 

function ( )V q : mnR R  with the property that any solution 
of the set of algebraic constraints in (7) is “closely related to” 
a local minimum of ( )V q  and vice versa [4]. When the 

distance between two agents: || || 0
i j

q q  , then ( )
i

V q is 

maximum, when the distance || ||
i j

q q reach a expectation 

value, i.e., the distance between two agents reach a 

expectation value,  then ( )
i

V q is minimum, when the distance 

is greater than the expectation value, then ( )
i

V q retain a very 

small positive number. 

For the virtual leaders, the dynamics can be written by:  

( , )

r r
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p f q p
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where the pair ( , ) m m

r r
q p R R   is the state of virtual 

leader. The virtual leader is dynamic/static agent that 
represents a group objective. The initial state of virtual leader 
is denoted by ( (0), (0)) ( , )

r r d d
q p q p . A static virtual leader 

has a fixed state that is equal to ( , )
d d

q p for all time. 

For undirected graph ( , )G V E , we define the 
communication radius among agents as r , and we know that 
during the movement of agents, when the relative distance 
between agents changes, hence the neighbors of each agent 
also change. Therefore, we can define a neighborhood set of 
agent i as follows: 

2
{ ||| || }

i i j
N j q q r                                                (6) 

where 
2

|| || is the Euclidean norm, the geometry of flocks is 

modeled by   lattice [4] that meets the following condition: 

2
|| ||

i j
p p d   ,   

i
j N                                           (7) 

where d is a positive constant indicating the distance between 

agent i and its neighbor j  

The    norm of a vector is a map mR R defined as: 

2

2
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Where the parameter 0  , the gradient ( ) || ||z z    is 

defined as: 
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The   norm || ||z   is differentiable everywhere. This 

property allows to construct a smooth collective potential  

function for agents. The ( )z  is a uniformly bounded 

function satisfying ( ) 0, 0Tz z z    , 
2

|| ( ) || 1 /z


  , 

and
1 1

( ) ( ( ) ( )) 0,Tx y x y x y      . 

Pump function ( )
h

z varies smoothly between 0 and 1. 
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where (0,1)h . Based on the pump function, the spatial 

adjacency matrix ( )A q  can be defined via its elements by: 

( ) (|| || / ) [0, 1],
ij h j i a

a q q q r i j                (11) 

where || ||
a

r r  , ( ) 0
ii

a q  . If 1h  , the pump function 

( )
h

z is a indictor function. The collective potential function 

( )V q can be written by: 

1
( ) (|| || )

2
j i

i j i

V q q q 


     

( ) ( )
z

d
z s ds


         

( ) ( / ) ( )
h

z z r z d      ,                                

1

1
( ) [( ) ( ) ( )]

2
z a b z c a b                                  (12)  

where || ||d d  , || ||r r  , 2

1
( ) / 1z z z   ,  and 

0 a b  , | | / 4c a b ab  . 

III. ROBOTS FLOCKING WITH COMMUNICATION NOISE UNDER 

VIRTUAL LEADER-FOLLOWER 

In the paper, we analyze robot flocking problem with 
communication noise based on the virtual leader-follower 
model. There is noise among robots and among leaders and 
followers. We suppose the noise among robots is zero-mean 
Gaussian white noise, and the noise is irrelevant and 
independent in time and spatial, meantime, we suppose that all 
robots can receive the information of virtual leader.  

The robots flocking with noise based on leader-follower 
model can be written by: 

( ) ( ) ( ) ( )g d

i i i i
u k f k f k f k    
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Where ( )
j

w k , ( )
j

v k  is zero-mean Gaussian white noise, and 

the noise is irrelevant and independent in time and spatial, i.e.: 
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For the virtual leaders, the dynamics can be written by:  

( , )

r r

r r r r
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p f q p
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




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where the pair ( , ) m m

r r
q p R R   is the state of virtual 

leader. The virtual leader is dynamic/static agent that 
represents a group objective. The initial state of virtual leader 

is denoted by ( (0), (0)) ( , )
r r d d

q p q p . A static virtual leader 

has a fixed state that is equal to ( , )
d d

q p for all time. 

 The collective form can be written by: 
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       Where ( )w k , ( )v k  is a vector, ( ) ( ) mL k L k 1 , the 

corresponding adjacency matrix { ( ( ))}
ij n n

A a q k


 , 

and ˆ( ( )) ( ( )) mL q k L q k 1 , the corresponding adjacency 

matrix ( ( )) { ( )}
ij n n

A q k k


 , and the parameter is equal to:  

2
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(|| ( ) ( ) ( ) ||)
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1 || ( ) ( ) ( ) ||

j i j

ij

j i j

q k q k w k
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q k q k w k
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
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. 

IV. SIMULATIONS AND ANALYSES 

We present simulation results to illustrate the performance 
of our proposed the robot flocking with communication noise 
based on virtual leader-follower model. For simplicity's sake, 
we only consider 2-D flocking for 100 robots in the free space. 
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The initial position of robots is stay between -50(m) and 50(m) 
in the x axis, and -50(m) and 50(m) in the y axis. The initial 
velocity of agents is stay between -5 (m/s) and 5 (m/s) in the x 
axis, and -5 (m/s) and 5(m/s) in the y axis. The 
parameters 4a b  , 0.2  , and sampling period 

0.02  (s), 0.1h  , 
1 2

0.5c c  . The communication 

radius among agents is 25m, and the expectation distance 
between robots is: 20d  . 

The three graph show that the velocity of robots on x axis 
and the velocity of robots on y axis under different mean-
square error. 
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Fig.1. Velocity of robots with the ( ( ) ( )) 1
i i

E v k v k   and ( ( ) ( )) 1
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Fig.2. Velocity of robots with the ( ( ) ( )) 10
i i

E v k v k   and ( ( ) ( )) 10
i i

E w k w k   

Fig.1 shows velocity of robots on the x axis and y axis 
when the mean square value of noise is ( ( ) ( )) 1

i i
E v k v k  , and 

( ( ) ( )) 1
i i

E w k w k  . Fig.2 shows velocity of robots on the x 

axis and y axis when the mean square value of noise is 
( ( ) ( )) 10

i i
E v k v k  , and ( ( ) ( )) 10

i i
E w k w k  . Fig.3 shows 

velocity of robots on the x axis and y axis when the mean 

square value of noise is ( ( ) ( )) 100
i i

E v k v k  , and 

( ( ) ( )) 100
i i

E w k w k  . 
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Fig.3. Velocity of robots with the ( ( ) ( )) 100
i i

E v k v k   and ( ( ) ( )) 100
i i

E w k w k   

Obviously, the robots can converge under communication 
noise, but bigger the mean square error of the communication 
noise is, worse the performance of robots flocking is. Under 
the leader-follower model, every robot can receive the 
information of the virtual leader, although there is 
communication noise among robots, the velocity of all robots 
can receive cohesion.   

V. CONCLUSIONS 

In the paper, we analyze the performance of robots 
flocking with communication noises. Through simulations, the 
results show all robots with communication noise can receive 
cohesion under leader-follower model, and bigger are the 
noises, then, poorer is the performance of robots flocking.  
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