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Abstract. On the basic of nonlinear model of pitching channel of airship, assuming the condition 
that the information of the unknown portion of the assumed airship model satisfy the norm-bounded 
condition and the boundary is known. A adaptation method has been used to solve the unknown 
information problem in this paper, and this paper has proposed a class of sliding mode control 
method in order to control attitude angle of pitching channel of airship. Finally, this control method 
is proved to be effective by numerical simulation. 

Introduction 
As a aerial platform, airship has unique advantage, such as low cost, long hang time, large load 

ability, small noise, low power consumption, excellent security, high cost-effectiveness and so on. 
But there is a lot of information about the design of airship and stability analysis, and there is 

little information about the control system of airship for secrecy reason. 
In 1998, Brazil AURORA project team of stratospheric airship published initial literature[1]. 

Literature[1] has given YEZ-2A airship’s six degree-of-freedom model that has been confirmed by 
test flight, and literature[2] has analysed the part of dynamic response. 

On the basic of six degree-of-freedom model of airship, this paper extracts the simplified 
nonlinear model of pitching channel for the research about airship control. Because the airship 
model has its irresistible inaccuracy or unknown, but the inaccuracy or unknown satisfy he 
norm-bounded condition and the boundary is unknown, this paper proposes a control that combines 
self-adaptation and sliding mode control to control airship attitude. Finally, this control method is 
proved to be effective by numerical simulation. 

Model Description 
Based on the previous work, the pitch channel model of airship can be described as follows:  

 ( ) ( )Mx f x g x u= +                      (1) 

And ][ zxqwux q= , M satisfies  
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The definition of ija  see the definition of M in previous work[3-5]. 
Choose the expect value of all states , , , , ,u w q x zq  are , , , , ,d d d d d du w q x zq ,Define the error 

variable 
de x x= − ，e x= ，then it hold  

 ( ) ( )Me f x g x u= +                       (3) 
Use the inverse matrix of M  
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 1 1( ) ( )e M f x M g x u− −= +             (4) 
To make it convenient for reading, some functions can be written as follows[6-8] 
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Define[9] 
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And  
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Then the system can be written as follows 
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Robust Sliding Mode Control of Attitude 
Assume that the airship moves at constant speed and attitude, and assume angle of pitch 

3.57/2=dθ , then define sliding mode surface[10-11]: 
 qcs d +−= )(11 qq           (9) 
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Differentiate the sliding mode surface 
 

1233231333131111 ukauafafaqcqqcs ++++=+= 

 (10) 

Consider decoupling control, 1u  controls vertical movement and 2u  controls forward 
movement, then design: 

 
2u Cons=           (11) 

Assume 333131 fafa +  is bounded and the boundary is known, then[12-15]: 
 

2331333131 kadfafa <+         (12) 

If the boundary is unknown, choose the value of the boundary 1d̂ , the design control law as 
follow: 
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It can be got by simplifying 
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Define: 
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choose a Lyapunov function as[16-19]： 
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It is not difficult to prove that system is stable in hypothetical condition. 

Numerical Simulation 
The system is proved to be stable by theoretical derivation as above, in order to test the stability 

of the system, this section uses SIMULINK tool case in MATLAB to the simulation. 
In this section, choose 2 10000u = , assume that the initial height is 1 meter, assume that attitude 

angle is 20 degree, and choose 1 0.01d = , simulation results are as follows: 
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Fig. 1 Forward Velocity       Fig. 2 Vertical Velocity 
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Fig. 3 Angle Velocity      Fig. 4 Pitch  Angle 
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Fig. 5 Flying Distance       Fig. 6  Height 
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Fig. 7 Actuator Angle 

Conclusion 
This paper proposes a control that combines self-adaptation and sliding mode control to solve 

problem that some information in nonlinear model of pitching channel of airship are unknown. On 
the basic of nonlinear model of pitching channel of airship, this paper proposes a control that 
combines self-adaptation and sliding mode control in hypothetical condition that the information of 
the unknown portion of the system satisfy the norm-bounded condition. The simulation results 
show that the vibration chatter of system and offset of attitude angle is alleviated and the gain of 
controller don’t need to be raise. So the control method preposed in this paper is better than smooth 
function from the point of alleviating offset. 
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