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Abstract. To meet the charging demand of the electric vehicles (EVs), a new two stage optimization 
(TSO) method is proposed in this paper with the consideration of the public service attributes of EV 
charging station (CS) and its impact on the distribution network. First, the locating and sizing scheme 
based on the multi-level capacity of CS is presented according to EV charging demand. Next, the 
optimal method of CS connected to the grid is derived from the point of view of the distribution 
network. Then, Mixed Integer Programming (MIP) and Improved Cuckoo Search (ICS) algorithm are 
sequentially applied to solve above optimization problem. Finally, experimental results manifest that 
the proposed model and algorithm are practical, useful and feasible. 

1. Introduction 
With the global energy crisis deepening and climate change problems growing over the past 

dacades, as a new type of energy saving and environment friendly transportation tool, electric 
vehicles (EVs) have become the focus of the global automotive industry for the future development 
and competition. Simultaneously, governments around the world have introduced policies to promote 
the development of EV industry. However, a comprehensive and sophisticated charging network is 
the premise and cornerstone for the promotion of EV industry. Therefore, theoretical study on the 
planning theory of the charging infrastructure is more important, especially in its infancy. 

At present, the research on the siting and sizing of EV charging station (CS) has been carried out 
by scholars in China and abroad [1, 2]. In this paper, the EV CS, on one hand, is regarded as a public 
service facility for urban transportation, which can meet the needs of EV charging; on the other hand, 
EV CS transform the energy of the power grid into the battery carried with the EVs as the interface of 
the two part, making it possible to integrate large-scale EVs into the grid. With the rapid development 
of EVs, the effect of EV charging load and its characteristics on the distribution network cannot be 
ignored. Thus, the impact of EV charging stations accessing to the distribution network should be 
taken into account in the process of the layout of CSs. A new two stage optimization (TSO) method is 
proposed in this paper. First, the locating and sizing scheme based on the multi-level capacity of CS is 
presented according to EV charging demand. Next, the optimal method of CS connected to the grid is 
derived from the point of view of the distribution network. 

In the next section, the location and capacity configuration of CSs are determined to minimize the 
investment and operation costs of CSs, which is based on the travelling needs in the first stage 
optimization from the perspective of the road network. Then, the model of the second stage 
optimization is described in Section 3 from the perspective of the power grid, which aims at the 
minimum network losses and fixed investment costs of connecting CSs to the grid according to the 
charging load for each CS and distribution network data. Section 4 highlights the Mixed Integer 
Programming (MIP) and the Improved Cuckoo Search (ICS) algorithm which are sequentially used 
to solve the TSO model proposed above. Section 5 demonstrates the applicability of the proposed 
model using a numerical example, while Section 6 offers the conclusions and directions for future 
research. 
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2. Model of the First Stage Optimization 

2.1 EV Charging Demand Constraints.  
EV charging behavior is influenced by many factors, of which the most important is charging 

needs of owners [3]. As shown in Fig. 1, the EV charging demand constraints are illustrated through a 
simply example, supposing that an EV departs from the origin O, heading to the destination D after 
points i, j and k respectively. Assuming that an EV v can arrive at point j, the remaining energy at 
point j for EV v equals the sum of remaining energy and recharging energy at previous point i minus 
the energy consumption between point j and i; besides, the remaining energy at point j for EV v 
should not be less than the SOC lower limit of the battery; at last, the sum of remaining energy and 
recharging energy at point j for EV v should not be more than the SOC upper limit of the battery. 
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Fig. 1 The chart of EV charging demand constraints           Fig. 2 The daily change curve of traffic flow 

 
To be clear, the EV charging demand constraints can be formulated as the 3 following general 

expressions: 
Biv+Riv-Dij≥C·socmin, where Biv is the remaining energy at point I for an EV v, Riv is the 

recharging energy at point I for an EV v, Dij is the energy consumption between point i and j, which is 
the equivalent of the distance between point I and j; C is the battery capacity, socmin is the lower limit 
of the battery State Of Charge (SOC); 

Bjv=Biv+Riv-Dij, where Bjv is the remaining energy at point j for an EV v; 
Biv+Riv≤C·socmax, where socmax is the upper limit of the battery (SOC). 

2.2 Model of the EV Flow.  
Based on the laws of Newtonian physics, the model elucidates that the EV flow is proportional to 

the attractiveness of the traffic zones and in inverse proportion to their distance.To generate flow on 
arc, all OD flows are allocated to shortest paths. The EV flow can be formulated as:  

i j
b

ij

f L
r

b bω ω
=                                                                                                                                    (1) 

where f is the EV flow between point i and j; ωi is the weight of the point i; wj is the weight of the 
point j; rij is the distance of shortest path between point i and j, which can be calculated through 
Dijkstra algorithm; b is a coefficient which indicates the influence degree of spatial distance on 
gravity; β reflects the relationship between the quantity of the EV users and the amount of the 
charging demand; L is a constant for specific network model. The three above coefficients can be 
derived from the regression model based on previous data. Furthermore, it is worthy to note that the 
time unit of EV flow calculated by the above formula is one day. 
2.3 Optimum Siting and Sizing Model for EV CS.  

The needs of most EV users can't be meet through slow-charging mode when traveling, due to 
their sensitivity to charging time. On the contrary, the CSs in fast-charging mode can provide services 
in a short time with high energy density. Consequently, the fast-CSs become the main focus in this 
paper and 6 major assumptions are made as follows: 

Candidate sites for CSs are the nodes of road network, that is to say, EV users only can accept 
services for charging at the nodes of road network; 

All EV users are rational, which means they take the shortest path for each OD pair; 
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Power consumption of an EV is linear with the distance of driving; 
All EVs are the same type with the same battery capacity, namely identical maximum travel 

distance; 
As the remaining capacity of an EV at origin point always maintain at a high level, it is assumed 

that 30% of those set out with 95% SOC, 40% of those set out with 90% SOC and the rest of those set 
out with 85% SOC; 

In order to guarantee the service life of EV battery, overcharge should be avoided; similarly, the 
remaining energy of an EV shoud not less than a threshold in consideration of the concerns on 
travelling for EV users. So let socmax be 95% and socmin be 20%. 

The objective function is formulated as: 
,1 ,2( )k k k

k
min f f X

∈

+ ⋅∑
V

                                                                                                                                   (2) 
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0
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,2 ( ) (1 )k k k kf aX bX e η= + + ⋅ +                                                                                                  (4) 
Where fk,1 is the annual investment cost of CS k, fk,2 is the annual operation cost of CS k, Xk is the 

capacity level of CS k, which is a nonnegative integer. Xk is equal to 0 if there is no CS to be 
constructed at node k, otherwise Xk is an integer; a is the cost of transformer with unit capacity; b is 
the cost of charger with unit capacity; ek is the cost of infrastructure construction for CS k, which is 
closely related to the location and the land rent; r0 is the lending rate; z is the operational life; η is the 
conversion factor; the operation cost of CS can be expressed as a function involved with initial 
investment. 

The constraints are as follows: 
EV charging demand 

min ,kvB C soc k v≥ ⋅ ∀ ∈ ∀ ∈Ν V                                                                                                                    (5) 
,kv jv jv jkv jkB B R D jk vσ= + − × ∀ ∈ ∀ ∈A V                                                                                                   (6) 

max ,kv kvB R C soc k v+ ≤ ⋅ ∀ ∈ ∀ ∈N V                                                                                                                (7) 
Where N is the set of nodes in the road network; A is the set of arcs in the road network; V is the set 

of EVs; σjkv is a binary variable. σjkv is equal to 1 if an EV v passes by arc jk, otherwise σjkv is 0. 
EV CS capacity constraint 

kv v k
v

R U X kα γ
∈

⋅ ≤ ⋅ ⋅ ∀ ∈∑
V

N                                                                                                                    (8) 

Where αv is a flow coefficient for EV v, which can be obtained from the gravity model; γ is a factor 
stands for the driving distance per kWh; U is capacity unit of CS. 

Other constraints 
0 ,kvR k v≥ ∀ ∈ ∀ ∈N V                                                                                                                    (9) 

{ }max0 nonnegative integersk kX X X≤ ≤ ∈                                                                            (10) 
Where, Xmax is the maximum capacity level of CS. 
Note that, the outputs of the model above are the sum of charging demand in one day for each CS. 

For this reason, the capacity configuration for each CS can be determined based on the following 
conversion formula. 

After analysing and processing the data from the road netwok in Shandong province [4], the daily 
change curve of traffic flow can be fitted as Fig. 2. It is reasonable to assume that EV flows in the 
study area obey the trend shown below and there is a linear relationship between charging demand 
and EV flow. Then, the hourly charging loads could be evaluated. Finally, the capacity configuration 
can be expressed as the peak charging load multiplied by a margin factor, as equation (11) shows. 

{ }( )k kt
Cap max P t= ×Φ                                                                                                              (11) 

Where Capk is the capacity of CS k; Pk (t) is the active power of CS k at time t; Φ is a margin 
factor. 
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3. Model of the Second Stage Optimization 
After optimum siting and sizing of CSs based on the travelling needs in the first stage optimization 

from the perspective of the road network, the impact of EV CSs accessing to the distribution network 
is taken into account in the second stage optimization. An optimal method of CS connected to the grid 
is presented, which intends to minimize the network losses and fixed investment costs of connecting 
CSs to the grid. 
3.1 Objective Function.  

1 1 2 2min c cλ λ+                                                                                                                             (12) 
2 2

1
1 1

- -

0 or 1

m h

ik i k i k
i k

ik

c (u x ) (v y )

=

δ m

δ
= =

= +∑∑                                                                                                              (13) 
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=

=∑                                                                                                              (14) 

Where c1 is the investment cost of new lines; c2 is the network losses; λ1, λ2 is the weight 
coefficient of the above objective respectively; δik means the connectivity of the node i in distribution 
network and the node k in road network. δik is equal to 1 if the node i in distribution network is 
connected to the node k in road network, otherwise δik is zero; μ represents the investment cost per 
kilometer; (ui,vi) is the coordinate of node i in distribution network; (xk,yk) is the coordinate of node 
k in road network; Ploss,t(·) is the network loss function at time t which involves δik, Pk(t) and Qk(t). 
Qk(t) is the reactive power of CS k at time t. 
3.2 Constraints.  

Connecting constraint 

1
1 1,..., h

m

ik
i

kδ
=

= =∑                                                                                                                             (15) 

Branch power flow constraint 
maxl lP P l L≤ ∈                                                                                                                             (16) 

Where Pl is the active power of branch l; Plmax is the maximum active power of branch l; L is the 
set of branches. 

Power balance constraint 
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where PDi, QDi is the active and reactive power of node i in distribution network separately; Ui, Uj 
is the voltage amplitude of node i and j; θi、θj is the voltage phase angle of node i and j; θij represents 
θi minus θj; Gij, Bij is the real and imaginary part of the element of node admittance matrix at row i 
and column j. 

Node voltage constraint 
,min ,max( ) ( ) ( )i i iU t U t U t≤ ≤                                                                                                                             (18) 

Where Ui,max, Ui,min is the upper and lower limit of voltage amplitude of node i. 

823



 

 

4. Solution to Solve TSO Model 
To solve the TSO model proposed above, the Mixed Integer Programming (MIP) and the 

Improved Cuckoo Search (ICS) algorithm are applied sequentially. 
 

4.1 Mixed Integer Programming. 
In mathematical sense, the model of first stage optimization belongs to set covering problem and 

could be solved exactly by branch and bound. In this paper, the IBM's business mathematical 
programming optimization program CPLEX is exploited to solve the first stage optimization. 
4.2 Improved Cuckoo Search Algorithm. 

Due to the nonlinear, multi-dimensional and non-convex characteristic manifested in the second 
stage optimization, an ICS algorithm with a strong ability to reach the global optimum region is 
presented [5]. In the basic cuckoo search, new solutions can be generated by equation (19). α is set to 
1 as a constant step size. However, the lack of automatic correction for search step size leads to 
inaccuracy during the final optimization phase. As a result, an ICS algorithm with adaptive step size 
can quicken convergence towards the optimality in the whole search. 

( )max

(G 1) (G)

30 /

é ( ) 1,2, , N
s

i i

t T

x x L vy i

e

a λ

a

+

− ×

= + ⋅ =

=



                                                                                         (19) 

Where t is the current iteration time, Tmax is the maximum iteration time; s is an attenuation 
coefficient which ranges from 1 to 30; Lévy (λ) represents a random variable drawn from a Lévy 
distribution with λ parameter. 

Note that the second stage optimization model has several constraints. This programming problem 
should be converted to an unconstrained problem through penalty function method in this article. 

5. Case Study 
In this section, the proposed model and solution is implemented in a typical area, where a 33 nodes 

distribution system [6] as shown in Fig. 3 and a 25 nodes road network system [7] as depicted in Fig. 
4 have been built. 
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Fig. 3 33 nodes distribution system              Fig. 4 25 nodes road network system 

 
In the first stage optimization, let γ be 5.13kM/kWh and C be 150kM according to BYD E6 and let 

the power factor of chager be 0.9; a, b and ek is taken as 100 thousend yuan, 100 thousend yuan and 
200 thousend yuan respectively; Assume r0 is 7%, z is 5 year, η is -0.6, Xmax is 3, U is 10000kWh and 
Φ is 1.2; In the gravity model, L is 3, β is 1 and b is2; in the second stage optimization, λ1 is set to 0.4, 
λ2 is set to 0.6 and μ is 20 thousend yuan; N is 25 and Pa is 0.25. 

After the first stage optimization, the optimum location and capacity configuration of CSs are 
derived, which are shown in Fig. 5. The chart presents that there is lower charging demand at the 
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nodes such as node 1, 2 and 6 and this amount of demand can be shift from node 1, 2 and 6 to their 
nearby nodes. For some busy and important nodes in road network, the possible charging demand 
pressure may bring about a higher capacity level. For instance, a 2.46MW CS need to built at node 22 
to satisfy the charing demand. 

After the second stage optimization, the optimal method of CS connected to the grid is described in 
Fig.6. According to this figure, the red rectangles are CSs achieved from the previous optimization; 
the grey points and lines are the nodes and branched in distribution network; the red lines represent 
the new branches to be constructed. It appears that with the consideration of network loss and 
investment cost some CSs are connected to closer nodes in distribution network like CS 3; some are 
connected to farther nodes, which may increases the investment cost but reduces the network loss 
greatly. 
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Fig. 5 Capacity configuration of CSs                      Fig. 6 Method of CS connected to the grid 

6. Summary 
In this paper, a new TSO method is presented with the consideration of the public service 

attributes of EV CS and its impact on the distribution network. Specifically, a locating and sizing 
scheme and an optimal method of CS connected to the grid are proposed from the perspective of the 
road network and the distribution network respectively. Then, MIP and ICS algorithm are 
sequentially applied to solve above optimization problem. Finally, a typical case is simulated to test 
and verify the model and algorithm. 

For complex CS layout planning, proper simplifications are made in this article. However, the 
model and the algorithm are sustainable and expansible. Further efforts should be make to determine 
optimal parameter values for the model and consider more actual conditions in the future research. 
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