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Abstract. Attitude control system of the rigid satellite is a coupling and uncertain nonlinear system 
with multi-inputs and multi-outputs. This paper presents a sliding mode controller for the satellite 
attitude system with limited control input and external disturbances. The design strategy can 
guarantees that the closed-system is global asymptotic stable and realizes the requirements of the 
control input saturation. The control algorithm is model-independent and it performs effectively on 
restraining bounded external disturbances. 

1  Introduction 
Satellite motion can be described by the kinematic and dynamic equations [1, and 5]. In practice, 

the mathematical description of satellite motion is highly nonlinear and coupling, thus the 
conventional linear control technique is not suitable for the controller design. In order to realizing 
satellite’s stabilization, the attitude control system must take these nonlinearities into consideration. 

Sliding Mode Control (SMC) has been recognized as one of the efficient methods for the coupling 
and uncertain nonlinear system [3, 6 and 7]. The main advantages of SMC are its fast dynamic 
response, robustness, simplicity in design and implementation. The disadvantage of SMC is the 
chattering phenomenon, which could be avoided by adopting the boundary layer technique [8, and 9]. 

This paper presents a control strategy which based on the sliding mode control for the rigid 
satellite attitude maneuver. The structure of the paper is organized as follows. Preliminaries are given 
in section 2. In section 3, a control law is proposed and related convergence analyses are also 
provided. Section 4 and section 5 give the numerical simulation and conclusion respectively. 

2  Preliminaries 

2.1 Kinematic Equation 
In this paper, the quaternion is adopted to describe the attitude of a rigid satellite for its global 

representation without singularity. The quaternion is defined by 0[ ], T Tq=Q q and it is subject to  
 2

0 1Tq + q q =  (1) 
The kinematic equation [2] in terms of the unit quaternion is given by: 

   (2) 

Where 3I  denotes the identity matrix and ω  is the body angular velocity vector represented in 
body frame with respect to the inertial frame. The notation ×q is a skew-symmetric matrix expressed 
by: 
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2.2 Dynamic Equation 
The dynamic equation of a rigid satellite is given by [2]: 
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  (4) 
Where 3 3R ×∈J denotes the inertia tensor of the satellite, 1 2 3[ , , ]Tu u uu = is the control torque, and 

1 2 3[ , , ]Td d dd = represents the bounded external disturbances, where , 1,2,3i id id≤ = and iδ is a 
positive constant. 

2.3 Control objective 
During the whole attitude maneuver, some assumptions are made. 
Assumption 1 
In satellite model equations, the unit quaternion q and the body angular velocityω  are available in 

the feedback control design. 
Assumption 2 
The external disturbances d come from the gravitational perturbation, solar radiation pressure, 

electromagnetic force, etc. are bounded. 
Assumption 3 
Each component of the control torque u is constrained by a bounded value, and expressed by 

 max( ) , 0, 1,2,3iu t u t i≤ ∀ > =  (5) 
The attitude control problem in this paper is to design the control law u such that: 
(a) The closed-loop system is globally stable in that all the signals are bounded and continuous; 
(b) The quaternion q and the angular velocityω  converge to an arbitrary small set in finite time, 

which is 1( )t ε≤q and 2( )t ε≤ω . 

3 Controller design 

The main idea of the SMC is to design a high-speed control algorithm which can drive the state 
trajectory of the nonlinear system onto a sliding surface during finite time and maintain the state 
trajectory on the sliding surface [1]. Hence, the selection of a sliding surface and the design of the 
control law are the main two steps. In this section, a sliding mode controller based on unit quaternion 
attitude representation is developed.  

3.1 Sliding surface design 
A new notation is introduced for simplicity of expression  

 ( ) sgn( ),0 1sig x x xαα α= < <  (6) 

It should be noticed that once 0 1α< < , ( )sig x α is continuous but not differentiable. 
A sliding surface [3, 4 and 5] in vector form is defined as follows: 

 s ( )ig α= +s C qω  (7) 
Where 1 2 3( , , )diag c c c=C  and 0ic > . 

Once the state trajectory of the satellite attitude system is on the sliding surface, i.e. = 0s , it 
follows  
 sgn( )α= −C qω  (8) 

Now, considering  the Lyapunov function candidate 
 2

1 0(1 ) TV q= − + q q  (9) 
With equation (2) and equation (8), the time derivative of 1V can be calculated as 

  (10) 

Equation (10) implies that if and only if = 0q . Therefore, 1V  is a Lyapunov function such 
that the quaternion q will converge to zero and 0q tends to 1± when t →∞ according to equation (1). 
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It should be noted that the equilibrium point 0( , ) ( 1, )q = − 0q is not stable. To prove this, the following 
Lyapunov function is considered. 
 2

2 0(1 ) TV q= + + q q  (11) 
The derivative is  

  (12) 

From equation (12), it is obvious that 0( , ) ( 1, )q = − 0q is not a stable equilibrium point. 
3.2 Control law design 
The sliding mode control law [3] divided into two parts: 

 ( ) eq swt = +u u u  (13) 

equ will make sliding surface invariant and it is computed by setting considering s = 0 . swu is 
an extra control which forces the quaternion and the angular velocity to reach on sliding surface 
during finite time. 

To obtain equ , we set and combine equation (7), equation (2) and equation (4) and we can get 

 ( ) ( )1
0 3

1 - ( ) ( ) ( )
2 it t diag q q

J
aa - ×+ + = - +J u d C I qω ω ω×  (14) 

According to equation (14), equ can be chosen as 

 ( )1
0 3( ) ( ) ( )

2eq c it t diag q qaa − ×= − − +u J d JC I qω ω ω×  (15) 

Where cd satisfies ci id d≥ [3], 1,2,3i =  
The SMC reaching law [3] is selected 

  (16) 

Where i 0k > and 0 1β< < . 

swu is calculated according to the reaching law (16) as 
 ( )sw sig β= −u K s  (17) 

Therefore, the designed control law is 

 ( ) ( )1
0 3( ) sgn( ) ( )

2c i it diag s s diag q qβ aa − ×= − − − +u J d K JC I qω ω ω×  (18) 

Now, considering the following Lyapunov function candidate 

 3
1
2

TV = s Js  (19) 

Differentiating 3V with respect to time and obtaining the following expression 

  (20) 

By substituting equation (18) into equation (20), the derivation of 3V can be simplified as 

  (21) 

This is clearly negative definite provided selecting appropriate cd . 
3.3 Chattering avoidance 
In order to avoid the chattering phenomenon which may cause possible damages to the actuators, 

boundary layer method is introduced to reduce the chattering. The basic idea is to replace the sign 
function with a saturation function [3] which defined as 
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Where ∆ is the boundary layer. Normally the larger the boundary layer width, the smoother the 
control signal. However, it no longer drives the system to the origin, but to within the chosen 
boundary layer instead. Very small thickness layer can also introduce the chattering phenomena. 

4 Simulation results 
To verify the effectiveness and the performance of the proposed control law, numerical 

simulations have been carried out using the rigid satellite system of equation (2) and (4) together with  
the developed sliding mode control law of equation(18). Considering a rigid satellite with the 
nominal inertia matrix 2(20,21,22)diag kg m= ⋅J . The initial attitude orientation of the 
unit-quaternion is [0.97601, 0.070428,0.10058, 0.17981]T= − −Q  (equivalent to the initial Euler 
angles[ 10 ,10 ,20 ]T−    ). The initial body angular velocity is 1(0) [0.12, 0.15,0.11]T rad s−= − ⋅ω  .The 
external disturbance is ( )  sin(0.5t)[0.004,-0.003,0.007]Tt N m= ⋅d . The desired quaternion and body 

angular velocity is [ ]1,0,0,0 T
d =Q and 1[0,0,0]T

d rad s−= ⋅ω respectively. 
The parameters related to the controller are chosen as 0.85α = , 0.9β = , (18,18,18)diag=K , 

(0.4,0.4,0.4)diag=C and [ ]0.01,0.01,0.01 T
c N m= ⋅d .  
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Fig. 1 Response of the quaternion 
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Fig. 2 Response of attitude velocity 
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Fig. 3 Response of the control input 
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Fig. 4 Response of sliding surface function 

Simulation results are presented in Fig. 1-Fig. 4. Fig. 1 illustrates the behavior of the attitude 
quaternion; Fig. 2 presents the response of the body angular velocity; Fig. 3 is the time history of the 
control torque and Fig. 4 shows the behavior of the sliding surface function. During the simulation, 
we bound the magnitude of the torque as 1.25iu ≤ .  
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5 Conclusion  
In this study, a sliding mode controller is proposed for the rigid satellite in the presence of external 

disturbances and limited control input. The proposed controller can drive the rotational motion of the 
rigid satellite to its desired trajectory in finite time. In the whole process, the attitude variables 
achieved are shown to be global asymptotically stable through the standard Lyapunov technique. 
Moreover, the proposed control strategy can guarantee no chattering occurrence and the confirmation 
of the designed controller parameters is simple. Numerical simulations also demonstrate the 
effectiveness and performance of the proposed control scheme. 
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