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Abstract. In this paper, the model predictive control (MPC) method is researched for energy 
management problem of plug-In hybrid electric vehicle (PHEV). Multi-step Markov prediction 
method is selected for the prediction. Dynamic programming (DP) is chosen to solve the 
optimization problem within the prediction horizon. Through the comparison of MPC result with 
the results of dynamic programming strategy and a rule-based strategy, it is certified that the control 
effect of MPC strategy is much better than the ruled-based strategy and close to the global optimal 
control under DP strategy. 

Introduction 
The model predictive control (MPC) is a novel control method with the idea of using history data 

or telemetry to predict the future traffic information [1]. Utilizing the limited preview of the 
velocity profile as the moving optimization horizon, an MPC controller can maintain computational 
load within a practical range. The reference [2] developed two MPC-based methodologies based on 
two different cost functions to solve the fuel minimization problem of the power-split hybrid 
electric vehicles. The reference [3] provided a comprehensive comparative analysis of three 
velocity prediction strategies, applied within a model predictive control framework. The reference 
[4] presented a novel algorithm, which uses information from global position system (GPS) and 
digital maps to schedule the use of the energy buffer along the planned route, for predictive control 
of parallel hybrid vehicle powertrains.  

Plant Model 
In this paper, a single-axis series-parallel plug-In hybrid electric vehicle (PHEV) powertrain was 

taken as the research object which mainly includes a conventional internal combustion engine (ICE), 
an integrated starter generator (ISG) motor, a traction motor and a clutch, as shown in Fig. 1.The 
ICE is directly connected to the ISG motor. 

ICE ISG Traction motor

Clutch Final drive

 
Fig. 1 Powertrain configuration of the PHEV 

The fuel consumption rate of the ICE, the traction motor efficiency and the ISG efficiency are 
extracted from empirical maps, which can be obtained by interpolation functions, shown as follows: 
 1( , )e e em f T n=  (1) 
 2 ( , )m m mf T nη =  (2) 
 3 ( , )ISG ISG ISGf T nη =  (3) 

The internal resistance model is the most prevailing model for the charge/discharge process of 
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the battery due to its simplicity, described as follows: 
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where Pb is the battery power; Voc is the open circuit voltage; Ib is the battery current; Rint is the 
internal resistance; Qc is the maximum battery capacity. Positive Pb denotes discharge. 

The major external forces acting on a moving vehicle include the rolling resistance of the tires, 
Fr; the aerodynamic resistance, Fw; the climbing resistance, Fg; and the tractive effort, Ft. The 
dynamic equation can be described as follows: 
 21cos sin

2t r w g r d
du duF F F F m mgf C Au mg m
dt dt

d α r α d= + + + ⋅ = ⋅ + + +  (6) 

where m is the vehicle gross mass; δ  is the mass factor that equivalently converts the rotational 
inertias of rotating components into translational mass; du

dt
 is the vehicle acceleration; g  is the 

gravity acceleration; rf  is the rolling resistance coefficient; α  is the road gradient; dC  is the 
aerodynamic drag coefficient; ρ  is the air density; A is the vehicle frontal area; u  is the vehicle 
velocity. 

Model Predictive Control for Hybrid Electric Vehicle  
The MPC algorithm is a receding horizon optimization strategy based on the predicted 

information of the system. For PHEV energy management problem, at each simulation step k, the 
steps are taken as follows. 

According to historical driving data, a prediction model is built to predict the velocities within a 
finite horizon, which is defined as the prediction horizon. Therefore, the velocities and accelerations 
in the prediction horizon are obtained. Then calculate the optimal control sequence within the 
horizon based on an optimization algorithm. Apply the first element of the optimal control sequence 
to the vehicle. Update vehicle velocity, and repeat the control procedure. 

The PHEV in this paper is a nonlinear, discrete-time system. Vehicle velocity is chosen as the 
output of the system. SOC is chosen as the state variable and the engine torque Te, engine speed ne 
and motor torque Tm are selected as the control variables.  The sample interval of MPC is fixed to 
1 second. The state transition equation of the PHEV system can be expressed as follows: 
 ( )( 1) ( ), ( )x k f x k u k+ =  (7) 
where ( )x k  and ( )u k  are state vector and control vector，respectively. 

For PHEV, the energy management strategies mainly focus on the fuel economy while the 
electric is much cheaper than the fuel. At step k, the cost function is formulated as follows: 
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where L is the instantaneous cost function at step k which equals to the instantaneous fuel 
consumption fuel; h is the terminal cost function of the state variable SOC at the end of the 
prediction horizon; α is positive penalty coefficient; SOCr is the reference value for SOC. At step k, 
the SOC reference value is assumed as following expression: 
 r 0 0 f

cyc

SOC ( ) SOC (SOC -SOC )kk
t

= -  (9) 

where SOCr(k) is the SOC reference value at step k; SOC0 is the initial maximum SOC value; SOCf 
is the terminal low level of SOC; tcyc is the total travelling time between twice battery charges 
which is assumed to be known. 
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The constraints of system variables can be expressed as follows: 
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A prediction method should be selected for the velocity prediction. We assume that the vehicle 
acceleration in the future is only related to the current velocity and acceleration and has nothing to 
do with the historical information, thus the acceleration change process can be seen as a Markov 
process. 

In this paper, the Chinese typical urban drive cycle (CTUDC) is chosen as the sample driving 
cycle. Take the sample step as 1 second. The velocity and acceleration are discretized into finite 
values, as shown in Equation 11. The acceleration discrete interval is chosen as 0.05m/s2, the 
velocity discrete interval is chosen as 10km/h.  
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At each moment of the sample driving cycle, known current velocity ( ) nv k v= and acceleration 

( ) ia k a= , record the accelerations of the next p steps, ( ) 11 ja k a+ = ,..., ( ) jpa k p a+ = . Denoting 

, , ,n i j x stepm −  as the number of x-step transition from ia  to ja at velocity discrete value nv . We can 
get the total number of x-step transition from ia  at velocity discrete value nv , denoting as 

, , -stepn i xm , as shown in Equation 12 At each velocity discrete value nv , the x-step transition 

probability from ia to ja is denoted as , ,n i jP ,calculated by Equation 13. 
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Therefore, at each velocity discrete value nv , we can get p probability transition matrixes 
,1 ,,...,n step n p stepP P− − . Such x-step probability transition matrixes are a total of l p× . Based on current 

velocity ( )v k and acceleration ( )a k , using ,1 ,,...,n step n p stepP P− −  to predict the accelerations 

( ) ( )1 , ,a k a k p+ + , then obtain the velocities ( ) ( )1 , ,v k v k p+ + . 
After the predicted velocities within the prediction horizon are obtained, the optimization 

problem becomes a finite-horizon nonlinear optimization problem with constraints. DP is the best 
choice to solve this problem. At step k, the optimal control sequence is obtained using DP method 
and only the first control variable is implemented to the vehicle. At step k+1, DP is implemented 
again to obtain the new optimal control sequence. 

Simulation Results and Discussion 
In this section, MPC is utilized to solve the energy management strategy problem of the PHEV. 

The results calculated by MPC are compared with the simulation results of the DP strategy and the 
PED + HDCD + HDCS strategy from reference [5].The CTUDC is selected to be used during the 

877



 

simulation experiment. The total simulation distance is 180 km, which is attained by repeating 31 
consecutive CTUDC cycles. And the vehicle is loaded with 65% of full load. 

At the beginning of the simulation, the battery is assumed as fully charge. Considering the health 
and efficiency of the battery, the high level and low level are selected to be 0.8 and 0.3, respectively. 
When the battery SOC is higher than 80%, the PHEV is not allowable to implement regenerative 
braking. When implementing the MPC and DP strategy, the SOC∆  and T∆  are set to be 0.5% 
and 5 Nm, respectively [6]. The prediction horizon length for MPC is set to be 10s. The SOC 
trajectories of the PHEV with three kinds of control strategies are shown in Fig. 2. 
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Fig. 2 The SOC trajectories under three kinds of strategies 

When the battery SOC is higher than 80%, the tendencies of three SOC trajectories are similar. 
Since regenerative braking is not available in this area, the SOC decreases rapidly to 80%. When 
the SOC is between 30% and 80%, though the SOC trajectory of MPC strategy slightly deviates 
from DP results, the tendencies of the two strategies are similar. It could be acquired by MPC that 
the battery SOC approximately linearly decreases to the low level of SOC, just as the DP strategy. 
Figure 3 shows the relationship between the trip distance and the fuel consumption per 100km of 
the PHEV with three kinds of strategies. 
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Fig. 3 The relationship curve between fuel economy and trip distance under  

three kinds of strategies 
As shown in Fig. 3, when the trip distance is less than 95 km, the fuel economy of PHEV under 

PED + HDCD + HDCS strategy is better than the results calculated by MPC and DP strategies. 
However, the latter is gradually superior to the former as the trip distance increases. Though the 
MPC strategy is unable to obtain the optimal fuel economy, the fuel economy is improved about 
10% than the PED + HDCD + HDCS strategy. 

By the comparative analysis mentioned above, the MPC strategy is obviously better than the 
PED + HDCD + HDCS strategy and can be implemented to obtain the optimization control close to 
the global optimal control. 

Summary 
The MPC algorithm has been implemented on the energy management problem for PHEV. First, 

a single-axis series-parallel PHEV was modeled and its systematic model was built for later 
simulation. Then, we formulated the MPC-based optimization problem. The multi-step Markov 
method was chosen for the velocity prediction. The global optimization theory is applied to the 
MPC framework and the DP algorithm was chosen to solve the optimization problem within the 
finite prediction horizon. The simulation result under MPC strategy was compared with DP strategy 
and PED + HDCD + HDCS strategy. The MPC result was obviously better than PED + HDCD + 
HDCS and close to DP result. 
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