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Abstract: In this paper, projective synchronization and parameter identification of a 
fractional-order chaotic system is studied. Based on the fractional-order stability theory, a universal 
projective synchronization controller and parameter identification rules are designed and proved by 
using Lyapunov stability theory. Finally, the numerical simulations verify the correction of the 
method. 

Introduction 
As fractional calculus played an important role for the nonlinear dynamical systems, studying 

dynamics of fractional-order nonlinear system has become an interesting topic[1-5]. Since the 
pioneering work of Pecore and Carro introduced a method about synchronization between identical 
and non identical systems with different initial conditional, chaos synchronization had a great 
variety of applications in physics[6], ecological system[7], secure communications[8], etc. In this 
paper projective synchronization and parameter identification of a fractional-order chaotic system 
are investigated. A reasonable controller and parameter identification rules are designed and proved 
by Lyapunov stability theory. Numerical simulation coincide with the theoretical analysis. 

Problem Description. 
Consider the following chaotic drive and response systems:                                                

)()( xfxFxDq
t += ϕ                                                           (1) 

and 
),,,()()( ψϕψ yxUygyGyDq

t ++=                                               (2) 
where nRyx ∈, are the state vectors. mR∈ψϕ, are the parameter vector. )(xf and )(yg are the 
1×n  matrices. )(xF and )(yG are the mn× matrix. ),,,( ψϕyxU is the a suitable controller. 

Besides 10 << q . 
Theorem 1. From the definition, the projective synchronization between the system (1) and (2) 

is achieved, if 0)()(limlim =−=
∞→∞→

tCxtye
tt

, where C is called the scaling matrix. 

]),...,,([ 21 ndiagC aaa= . 
Theorem 2. Stability theorems of fractional-order system 
Consider the following nonlinear system of fractional differential equation. 

xxA
dt

xd
q

q

)(=                                                                  (3) 

where nnRxA ×∈)( , 10 << q , Τ= ),...,,( 21 nxxxx are state vectors. The fractional-order system (3) 
is asymptotically stable if and only if 2)))((arg( πλ qxAi > , i =1,2,…,n, where )))((arg( xAiλ  
denotes the argument of the eigenvalue iλ  of A . 
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Projective Synchronization and Parameter Identification 
In this section, projective synchronization and parameter identification of Qi fractional-order 

chaotic system will be studied.  
The drive system described through (1) is given by 
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where 321 ,, xxx are the state variables. The chaotic attractor of the system (4) for the order of 
derivative 915.0=q  are displayed through Fig 1 for the parameters’ values 35=a , 38=b , 

80=c . 

 
Fig.1 The phase portrait of the system (4) is shown in spaces x-y-z.. 

The response system described through (2) is given by 
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where 1u , 2u , 3u  are the control parameters.  
In order to facilitate the following analysis, the error functions through theorem 1 are defined as 

1111 xye α−= , 2222 xye α−= , 3333 xye α−=                                        (6) 
And 

aaea −= , bbeb −= , ccec −=                                                 (7) 
Now, we will choose suitable controllers and parameter identification rules to achieve projective 

synchronization according to theorem 2. 
From Eq.(1), (2) , the error systems are obtained as 

)]()([),,,()()( xfxFCyxUygyGeDq
t +−++= ϕyϕy                                (8) 

Theorem 3. If the projective synchronization controllers are selected as 
DKexCfygU +++−= )()(                                                        (9) 

Where 
















=

α
α

α

00
00
00

C , 















−

−
=

000
00
00

c
a

K , 















+−=
0

0

22 xyD α , 

and identification laws of parameters are calculated as 

881

















−=

=

+−=

21

33

1112

ey
dt

ed

ey
dt

ed

eyey
dt

ed

q
c

q

q
b

q

q
a

q

                                                          (10) 

then, the response system (5) is synchronized with the drive system (4) globally and 
asymptotically, i.e. 0)(lim =

∞→
te

t
. 

proof: From Eq.(8), (9), the error systems are achieved as  
DKexCFyGeDq

t ++−= ϕy )()(                                                (11) 
A Lyapunov function is defined as follows: 
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the time derivative of V along the trajectory of the error system (11) leads to 
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as RV ∈  is positive definite function and q

q

dt
Vd

 is the negative definite function, so according 

to the Lyapunov stability theory, the response system (5) is synchronization to the drive system (4) 
asymptotically. 

Numerical Simulation and Results 
In this section, the initial conditions of the drive and response systems are 

)2,1,1())0(),0(),0(( 321 −−−=xxx , and )5,1,1())0(),0(),0(( 321 −−=yyy . 3.0=α . The initial values of 
the estimated unknown parameter vectors of the systems are taken as )100,5,20(),,( −=cba . From 
figure 2, it is seen the error vectors converge asymptotically to zero, and figure 3 show that the 
estimated parameter vectors converge to the original parameter vectors, respectively.  

       
Fig.2 Trajectories of the errors function   Fig.3 Trajectories of the estimated parameter vectors 

Conclusion 
In this manuscript, projective synchronization and parameter identification of a fractional-order 

chaotic system is presented. Moreover, suitable projective synchronization controller and parameter 
identification rules are given by using the fractional-order stability and proved by Lyapunov 
stability theory. Finally, numerical simulations are performed to verify these results. 
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