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Abstract. The principle of constant gradient field NMR is same with the logging expert system, the 
state-of-the -art technology in the world, wherein, gradient design and 2D spectrum inversion 
algorithm are adopted to quicken the instrument measurement speed while the diffusion coefficients 
of a fluid can be measured and the information obtained via the measurement of instrument can be 
more complete and authentic. The Article mainly introduces a magnet for gradient constant field 
NMR from such aspects as the parameter calculation of the gradient field, the selection of magnetic 
materials, finite element calculation and analysis, and detector installation and debugging. 
Experimental data shows that the design can completely realize fast NMR inspection and 2D 
spectrum inversion.  

1. Introduction  
Recently, there is a logging expert system introduced to the world, which adopts gradient fields, 

multi frequency, multi layer measurement and also 2D spectrum inversion calculation method. The 
system not only improves the measurement speed of the instrument but also extends the exploration 
depth further while obtaining more physical information of the rock, especially on the diffusion 
coefficients of molecules.  

The gradient field NMR rock sample analysis instrument is an effective method for the laboratory 
study of 2D NMR spectroscopy. As to the said 2D NMR spectrum, one of the dimensions is 
transverse relaxation time T2 and the other is diffusion coefficient D. Both can be directly obtained 
from the 2D NMR spectrum. If compared with pulsed gradient technology, the rock sample analysis 
method for constant field NMR is same with the principle of the expert system and will set a 
foundation for the development of the state-of-the-art NMR instrument. Since the relaxation time and 
the diffusion coefficient of the liquid are mutually independent, 2D NMR spectrum can confirm the 
liquid type directly so as to separate oil, air and water fast and to provide a new approach to identify 
liquid types.  

2. Magnet with Gradient Field 
The creation of a constant gradient field is the core technology of the 2nd generation of NMR 

instrument. The field shall meet the requirements on both transverse evenness and longitudinal 
linearity. This section mainly explains such steps as the design, the calculation and the preparation of 
a magnet with a gradient constant field for NMR.  
2.1 Design of Magnet  

Currently, there is no precedent of designing such a magnet with a constant gradient field. But 
since the application of electromagnetic field calculation is very mature, the calculation method 
provides a theoretical basis for the calculation and analysis of constant gradient field. We can refer to 
the current calculation method of electro-magnetic field, and use finite difference method, finite 
element method, integral equation method and so on to design and calculate the constant gradient 
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field. First, we can determine the dimensions of each part of the magnet and then optimize and correct 
each part of the magnet via 2D and 3D finite element analysis so as to reach the best result.  
 

2..1.1 Magnet Parameter Design  
Designed parameters of the constant gradient field are:  
1. Field strength at the center  B0=700~1200Gs 
2. Field gradients   20Gs/cm 
3. Linearity of field gradients ≤±5% 

2.1.2 Selection of Magnetic Materials  
During the selection of magnetic materials, there are tree major aspects to consider, which are max 

energy product, intrinsic coercive force and Br temperature coefficient. The nature of the magnetic 
material is the most important factor among the said three aspects. Therefore, the selection of a 
suitable magnetic material is a key to the development of this magnet. The features of two magnetic 
materials are listed in below. See table 1.1.  

Table 1 Features of Permanent Magnetic Materials 
 

Material 
Max Energy 

Product 
(Unit: KJ/m3) 

Intrinsic 
Coercive Force 
(Unit: KA/M) 

Br 
Temperature 
Coefficient 

(%) 

Max 
Operation 

Temperature 

NeFeB(250/240) 266 2560 -0.12 80-200℃ 
2:17SmCoⅡ(150/210) 200-220 1660-2100 -0.03 150-250℃ 
 

According to Table 1, 2:17SmCo has a better temperature reliability and will be the better choice 
in order to guarantee the reliability of the gradient field and the gradient linearity.  

2.1.3 Design of Magnet Shape and Slight Field Adjustment 
Purpose to Design the Shape of the Magnet. 
The magnet shape decides the general distribution of the magnetic field. If magnetic flux leakage 

and calculation precision are taken into consideration, both 2D mode and 3D modes have a certain 
difference with the reality. Therefore, after the design of the overall shape of the magnet, slight 
adjustment is still required to the magnet so as to cover the design defect and to meet the requirements 
for use. See figure 1 for the shape of the magnet.  

 
Figure 1 Distribution of Constant Gradient Field 

 

Detection Area 
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Figure 1 shows the distribution of the gradient field within the detection area. The magnetic flux 
density increases from No. 1 to No. 8 gradient and the field distribution at No.1-8 gradient can be 
detected via the probe of Gauss meter.  
 
2.2 Finite Element Calculation 

A static magnetic field can be expressed via below formulas:  
0=⋅∇ B                    (1) 

JH =×∇                 (2) 
HB µ=                     (3) 

Magnetic flux density B can be expressed by 
AB ×∇=                  (4) 

A second order differential equation as below can be obtained from formula (1-1)-(1-4): 

JA =







×∇×∇

µ
1

        (5) 
In the formula, B is the magnetic flux density, H magnetic induction, J current density, µ  

magnetic conductivity of the material and A vector potential. If 0=⋅∇ A  is set, the unique value of A 
can be determined via finite element calculation of Formula (1) and the corresponding boundary 
conditions. And after post processing, magnetic flux density and the field quantity thereof can be 
derived. 

3. 3D Finite Element Analysis 

3.1 Creation of a Controlling Equation for the 3D Static Field and Set-up of Boundary 
Conditions 

 
3D static field meets below vector equation:  

JA
r

0
1 µ
µ

=







×∇×∇

            (6) 
Dirichlet boundary condition is applicable there  

PAn =×ˆ                                   (7) 
And so is Neumann boundary condition for symmetric planes  

( ) 0ˆ =×∇× An                           (8) 
Apply rµ the continuous condition on abrupt interface 

−+ ×=× AnAn ˆˆ                          (9) 
And 

−
−

+
+ ×∇×=×∇× AnAn

rr

ˆ1ˆ1
µµ     (10) 

3.2 Variational Formula 
According to variational principle, Formula (7)-(11) can be solved via the limit value of below 

functional under Formula (7) and (8).  

( ) ( ) ∫∫∫∫∫∫ •−×∇•×∇=
VV

r

AdVJdVAAAF 0
1

2
1)( µ

µ                 (11) 
3.3 Division of Magnetic Area 

To identify each unit, a M×4 data array is introduced to code each unit and expressed with ),( ein , 
wherein, ,3,2,1=i  and 。Me ,,3,2,1 ⋅⋅⋅= . M presents the total number of units.  
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Besides the above data, the finite element formula still requires other below data:  

(1) ),,,3,2,1( Nizyx iii ⋅⋅⋅=、、 Coordinate of each nodal point and N presents the total number of 
nodal points; 

(2) Values of 0,µµ r  and zj of each unit; 
((3) For corresponding value of p of the nodal point on 1Γ , paralleled condition shall be 

reinforced to make p =0; 
(4) 2Γ Values of γ  and q  on each line segment. 

3.4 Element Interpolation 

 
Figure 2 A Tetrahedron Unit of 3D Finite Elements 

The unknown Function A within the tetrahedron unit is approximate to:  
( ) zdycxbazyxA eeeee +++=,,                               (12) 

Formula (12) is introduced to the for nodal points to determine the four coefficients 
eeee dcba 和、、 . If the value of j  on No. A  nodal point is marked as 

e
jA , then below formulas can 

be obtained:  
( ) 1111 ,, zdycxbazyxA eeeee +++=  
( ) 2222 ,, zdycxbazyxA eeeee +++=  
( ) 3333 ,, zdycxbazyxA eeeee +++=  

   ( ) 4444 ,, zdycxbazyxA eeeee +++=  
 

According to the above formulas, below can be available:  

( )EeEeEeEe
e

eeee

eeee

eeee

eeee

e
e AaAaAaAa

V
zzzz
yyyy
xxxx
AAAA

V
a 44332211

4321

4321

4321

4321

6
1

6
1

+++==

 

( )EeEeEeEe
e

eeee

eeee

eeee

e
e AbAbAbAb

V
zzzz
yyyy
AAAA

V
b 44332211

4321

4321

4321

6
1

1111

6
1

+++==

 

971



 

( )EeEeEeEe
e

eeee

eeee

eeee

e
e AcAcAcAc

V
zzzz
AAAA
xxxx

V
c 44332211

4321

3321

4321

6
1

1111

6
1

+++==

 

( )EeEeEeEe
e

eeee

eeee

eeee

e
e AdAdAdAd

V
AAAA
yyyy
xxxx

V
d 44332211

4321

4321

4321

6
1

1111

6
1

+++==

 
Wherein,  
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If the functional determinant is expended, then 。和、、 e
j

e
j

e
j

e
j dcba  can be determined.  

And then if the formulas of 
e
j

e
j

e
j

e
j dcba 和、、  are introduced to Formula (12), below can be 

available: 

( ) ( )∑
=

=
4

1
,,,,

j

e
j

e
j

e AzyxNzyxA
                                   (13) 

Wherein, the interpolation function  ( )zyxN e
j ,,  is as below:  
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          (14) 
Wherein, the interpolation function has below feature:  
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                               (15) 
3.5 Finite Element Calculation 

First, Formula (12) is expressed in scalar and component as below:  
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    (16) 

Formula (16) is discreted and in Illustration 2, Component ZYX AAA 和、  are expressed as below: 

 
Figure 3 Tetrahedron Unit within Discrete Region 

Unit Cube 
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               (17) 
Formula (17) is inserted to Formula (16) to gain Part F of Unit e and then below can be obtained 

via the solution of the partial differential coefficients of 
e
zj

e
yj

e
xj AAA 、、 .  
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All units are organized and the conditions of stagnation points are strengthened to get below 

simultaneous equations:  
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Formula (19) is re-organized as below:  
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                                                              (20) 
Dirichlet boundary condition is strengthened, namely the magnetic potential of each nodal point 

can be solved via the above formula.  
According to the above principle, the electro-magnetic module of ANSYS, a finite element 

analysis software, is used to calculate magnetic vector ZA  and then magnetic flux density 







×∇=

∧

ZAB Z
 is obtained via 0B .  

4. Process and Assembly of the Magnet 

4.1 Magnet Process 
(1) A polar plate is processed as Figure 4 shows.  
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Figure 4 Polar Plate of the schematic 

 
The polar plate is used to control the distribution of magnetic field within the gap via the shape of 

two corresponding polars, thus, Angle a must be guaranteed to a tolerance of ±0.005 during the 
process from the aspect of a constant gradient field.  

(2) The process of magnetic yoke includes the process of a yoke plate and a side yoke plate. In 
order to guarantee the un-saturation of magnetic flux, it can do if the thickness of the magnetic yoke 
section is less than 25mm as per calculation.  

 
Figure 5 Magnetic Material 

 
(3) Process of Magnetic Material 
The magnet with a constant gradient field is made of 2:17SmCo the features of which decides that 

mechanical process is not suitable and that only linear cutting can do. To guarantee the assembly of 
the magnet, the detail dimensions shown in Figure 5 must be implemented.  
4.2 Magnet Assembly 

Since the magnetic material cannot be directly pasted on the yoke plate due to the existence of 
strong repelling force, magnetic blocks shall be first pasted on locating blocks which are 
ladder-shaped and locked to the yoke plate with locking screws. See Figure 6.  
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Figure 6 Paste of Magnet 
 

The magnet with a constant gradient field is the most important part to this constant gradient field 
NMR rock sample analysis system which requires a magnetic field with a certain gradient force and 
gradient linearity. And the said magnetic field shall be stable to the situations when external 
temperature is not changed largely. The precise calculation, process, assembly and debugging to the 
magnet are required to get a constant gradient field.  

5. Experimental Results 
NMR tests are implemented to 6pcs of alkane samples separately and the relaxation time and 

diffusion coefficient of the alkane samples can be obtained from the test data via linear regression 
calculation.  
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Figure 7 Relationship between Diffusion Coefficient D and Relaxation Time BT2  of Alkane 

 
According to the illustration, the linearity values gained from the linear regression function are 

very high, all above 0.99, and the relaxation time BT2  and diffusion coefficient D of alkane decrease 
as per the increase of carbon content.  

Magnet Block 
Locking Screw 

Locating Block Yoke Plate 

      Time 
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Figure 8 2D NMR Spectrum of Kerosene 

 

 
Figure 9 Contour Chart of the 2D NMR Spectrum of Kerosene 

Figure 8 is the 2D NMR spectrum of kerosene and Figure 9 is the corresponding contour chart of 
the 2D spectrum. According to the figures, the 2D NMR spectrum of kerosene is on 2TD −  relation 
line, which shows that the diffusion coefficient and relaxation time of the raw oil have linear 
dependence relation.  

6. Conclusion 
1. The core technology of the NMR instrument is the design of magnet, which impacts the 

strength and precision of the NMR signal and the signal-noise ratio necessary to 2D spectrum 
inversion calculation.  

2. As viewed from the experimental data, the magnet with constant gradient field for NMR can 
be realized from the 2D spectrum inversion and the accuracy and repeatability can reach industrial 
requirements.  

3. In order to improve the signal-noise ratio of the NMR instrument, field strength, transverse 
evenness and longitudinal linearity of the field shall be adjusted properly. During numerical 
simulation, if such complex factors as magnetic flux leakage and temperature variation are taken into 
consideration, more precise design data can be obtained and the overall performance of the magnet 
can be improved.  
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