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Abstract—According to the tree structure description of the 
multibody system, the Kane’s equations to establish the 
dynamic equations of the system are proposed. The forms of 
the equations are general and simple. Moreover, the equations 
are not only minimum in dimension but also convenient for 
computer calculating. The parachute-submunition system is 
taken as the modelling object which includes submunition, 
plate, parachute. The dynamic equations of the three parts are 
established respectively through which the dynamic and 
kinematics equations for the whole system are established. The 
influences of the drag coefficient and the crosswind velocity on 
the scan parameters are simulated by computer programming. 
The simulation results are in accordance with the flight 
principle and exterior ballistic theory, which verifies the 
reasonableness of the modelling method and the established 
dynamic equations. 

Keywords-Dynamic model; Kane’s equation; Parachute-
submunition system; Simulation. 

I. INTRODUCTION 
How to establish a mathematical model which is both 

general and convenient for computer calculating is the 
research emphasis on the dynamics of multibody system. 
Various methods are used to establish the dynamic equations 
of multibody system such as Newton-Euler’s method, 
Lagrange’s method and Kane’s method. However, Newton-
Euler’s method needs to calculate a lot of internal forces and 
constraint forces. That make it complicated to establish the 
model if the system is complex. Lagrange’s method needs to 
calculate the dynamic functions and their derivatives that 
will increase large amounts of calculations. Relative studies 
have shown that Kane’s method has more advantages on the 
modelling of multibody system. 

Kane’s method is an analytical method of multibody 
system that is proposed and developed by Kane T.R. in the 
1960s [1]. Kane’s method selects the general velocities to 
describe the motion of both holonomic and nonholonomic 
system. The established equations do not require 
computation of workless constraint forces and moments, 
which makes this method easily to be programmed and more 
computationally efficient compared with the other methods. 

Kane’s method caused a lot of attention since it was put 
forward and researchers discussed its characters in many 
papers. Desloge and Keat discussed the relationship between 
Kane’s and Appell’s equations [2,3]. London summarized 

and compared the Newton’s, Lagrange’s, D’alembert’s and 
Kane’s equations [4]. Townsend studied the equivalence of 
Kane’s, Appell’s and Lagrange’s equation [5]. Kane 
summarized the four characteristics of the Kane’s equations 
and compared the advantages with other methods in 
application [6, 7]. 

The terminal sensitive submunition is a kind of smart 
ammunition that applied advanced sensing instrument 
technology and EFP warhead technology [8] Researches in 
the dynamics models of parachute-submunition system are 
found based on Lagrange Mechanics [9], Kane method [10], 
and Newton method [11]. 

This paper begins with the tree structure description of 
the multibody system followed by the Kane’s equations for 
multibody system are proposed. With this method, the paper 
calculates the equations of the submunition, plate, parachute 
and finally gets the dynamic equations of the parachute-
submunition system. At last, the corresponding numerical 
analyses and conclusions are given. 

II. KANE’S METHOD OF MULTIBODY SYSTEM 

A. Structure Description of the System 
As the system shown in Fig. 1, body 1 is the reference 

body of all the other bodies, which is called the main body. 
For the two connected bodies, the body close to the main 
body is called the higher body and the other is called the 
lower body. 

Figure 1.  Tree structure description of the system 

In order to establish the dynamic equations of the system, 
we can separate the system into independent parts and 
establish the dynamic equations of each part respectively. 
Then we can combine the established dynamic equations of 
each part into the dynamic equations of the system based on 
the connected relationship of each part.   

According to Kane’s equations, after generalized 
velocities pu  of the body having been determined, the 
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absolute velocity v  and absolute angular velocity ω  of any 
point on the body can be expressed as the linear 
superposition of partial velocity pv  and partial angular 
velocity pω [1] 
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Where, p  is the number of generalized velocities of the 
body. Therefore, the partial velocity and partial angular 
velocity reflect the motion features of the whole system as 
well as each body. So the motion features of the system can 
be obtained from the partial velocity and partial angular 
velocity of each body. 

B. Motion Description of the System 
As shown in Fig. 2, i  and j  are two adjacent bodies of 

a multibody system and i  is the higher body. The 
coordinate variables that describe the motion of the body j  
relative to the body i  are selected as the generalized 
velocities. ih  and ijb  are two points on the body i . ih  is the 
reference point that describes the motion of the body i  and 

ijb  is the reference point that describes the motion of the 
body j  relative to the body i . jh  is a reference point on the 
body j  at which establishs two coordinate systems: 
coordinate system jih  that moves with the body i  and 
coordinate system jh  that moves with the body j . 

Figure 2.  Motion description of the system 

The motion of the body j  relative to the body i  can be 
described by the translation of the point jh  relative to the 
point ijb  and the rotation of the coordinate system jh  
relative to the coordinate system jih .Suppose that the body 
i  has belongs to the system A whose generalized velocities 
are 

0pu , where 0p  is from 1 to An . The body j  connects 
with the body i  and the degree-of-freedom (DOF) of the 
body j  relative to body i  is jin . Therefore the DOF of the 
body j  is 

A ji
jn n n= +                               (2) 

According to the expansion of the generalized velocities, 
the partial velocity and partial angular velocity of any point 

jp  on the body j  can be expressed as 
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Where, 
jh

pv  is the partial velocity of the point jh ; 
jr

pω  is 
the partial angular velocity of the rotation of the body j ;  

i
pω  is the partial angular velocity of the body i ; 

( , )j i
pω  is the 

partial angular velocity of the rotation of the body j  
relative to the body i . 

C. Dynamic Models of the System 
Suppose that the body j  belongs to the system B, then 

the Kane’s equations of the system C according to the 
systems A and B are as follows. 

• Generalized inertial force of each system 
The generalized inertial force of each system is  

( )*( ) ( ) ( )
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n
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f m u c u
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Where 
( )( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k
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• Generalized active force of each system 
The generalized active force of each system is 

( ) ( ) ( ) ( ) ( )k k k k k
p p pf = ⋅ + ⋅v F Mω                    (6) 

Where ( )kF  and ( )kM  are the resultant force and 
resultant moment that do work on system k . 

• Dynamic models of the whole system 
According to the Kane’s equations, the sum of the 

generalized inertial force and the generalized a force is zero, 
and the dynamic equations of the system are 

pq q pq q pm u c u f⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦                   (7) 
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III. DYNAMIC MODEL OF THE PARACHUTE-SUBMUNITION 
SYSTEM 

A. Basic Hypothesis 
• The parachute and its additional parts are a rigid 

body that have a certain shape and mass. 
• The parachute-submunition system consist of three 

rigid bodies: submunition, plate and parachute. The 
submunition moves with six DOFs which is as the 
main body. The plate connects with the submunition 
by the column hinge and it rotates relatively with 
one DOF. The parachute connect with the plate by 
the virtual spherical hinge and it rotates relatively 
with three DOFs. Therefore the total DOFs of the 
multibody system is ten. The structure of the 
parachute-submunition system is as the Fig. 3 follow. 

Figure 3.  Structure of the parachute-submunition system 

B. Coordinate Systems 
• The ground coordinate system, oxyz . The origin 

o is located in the center of the muzzle; The axis ox  
is the intersecting line of shooting plane and 
horizontal plane. The axis oy is in the vertical plane 
and its positive direction is upward; The axis oz  is 
determined by the right-hand rule. 

• The translation coordinate system, (1)c xyz ： The 
origin (1)c  is located in the centroid of the 
submunition. The translation coordinate system is 
obtained by the translation of the oxyz . 

• The submunition coordinate system, (1) (1) (1) (1)
1 1 1c x y z : 

The axis (1) (1)
1c x  is in accordance with the 

submunition axis and the positive direction is 
pointing to the flight direction. The axis (1) (1)

1c y  and 
(1) (1)

1c z  are in the cross section of the submunition. 
The submunition coordinate system rotates with the 
submunition. 

• The submunition velocity coordinate system, 
(1) (1) (1) (1)

2 2 2c x y z . The axis (1) (1)
2c x  is in accordance with 

the submunition velocity. The axis (1) (1)
2c y  is in the 

vertical plane that is perpendicular to the axis 
(1) (1)

2c x .Its positive direction is upward; The axis 
(1) (1)

2c z  is determined by the right-hand rule. 

• The submunition axis coordinate system, 
(1) (1) (1) (1)c ξ η ς . The axis (1) (1)c ξ  is in accordance with 

the submunition axis. The axis (1) (1)c η  and (1) (1)c ς  
are in the cross section of the submunition. The 
submunition axis coordinate system doesn’t rotate 
with the submunition. 

•  The plate coordinate system, (2) (2) (2) (2)
1 1 1c x y z . The 

origin (2)c  is located in the centroid of the plate. The 
axis (2) (2)

1c x  is in accordance with the plate axis and 
the positive direction is pointing to the flight 
direction. The axis (2) (2)

1c y  and (2) (2)
1c z  are in the 

cross section of the plate. The plate coordinate 
system rotates with the plate. 

• The parachute coordinate system, (3) (3) (3) (3)
1 1 1c x y z . 

The origin (3)c  is located in the centroid of the 
parachute. The axis (3) (3)

1c x  is in accordance with the 
parachute axis and the positive direction is pointing 
to the flight direction. The axis (3) (3)

1c y  and (3) (3)
1c z  

are in the cross section of the parachute. The 
parachute coordinate system rotates with the 
parachute. 

• The parachute velocity coordinate system, 
(3) (3) (3) (3)

2 2 2c x y z . The axis (3) (3)
2c x  is in accordance 

with the parachute velocity. The axis (3) (3)
2c y  is in 

the vertical plane that is perpendicular to the axis 
(3) (3)

2c x .Its positive direction is upward; The axis 
(3) (3)

2c z  is determined by the right-hand rule.  
• The parachute axis coordinate system, (3) (3) (3) (3)c ξ η ς . 

The axis (3) (3)c ξ  is in accordance with the parachute 
axis. The axis (3) (3)c η  and (3) (3)c ς  are in the cross 
section of the parachute. The parachute axis 
coordinate system doesn’t rotate with the parachute. 

C. Motion Description of Parachute-Submunition System 
• Motion description of the submunition 
The position vector of the submunition’s centroid is 

(1)
c x y z= + +r i j k                              (9) 

The velocity vector of the submunition’s centroid is 

(1) (1)
c c x y z= = + +v r i j k                        (10) 

The angular velocity vector of the submunition is 

1 1 1

(1)
x x y y z zω ω ω= + +ω i j k                     (11) 

The generalized velocities are selected as  

...p x y zu x y z ω ω ω⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦           (12) 
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According to the generalized velocities, the velocity and 
angular velocity vector of the submunition are expressed as 

10
(1) (1)

1
c p p

p

u
=

= ∑v v , 
10

(1) (1)

1
p p

p

u
=

= ∑ω ω           (13) 

The partial velocity vectors (1)
pv , partial angular velocity 

vectors (1)
pω  and their derivatives are shown in the 

following Tab.1. In order to calculate conveniently, the 
partial velocity vector and partial angular velocity vector are 
resolved in the parallel motion coordinate system and body 
coordinate system respectively. 

• Motion description of the plate 
2o  is selected as a reference point on the plate and it is 

the center of the column hinge. Since the plate is thin, 
assuming that the center of column hinge 2o  and the 
centroid of plate (2)c  are coincident. The plate revolves 
around 2o with one degree of freedom. 

The position vector of 2o  is 

2

(2) (2) (1) (2,1)
o c c= = +r r r r                    (14) 

Where (2,1)r  is the radius vector from the centroid of the 
submunition to the center of the column hinge. It is 
expressed as component forms in the submunition 
coordinate system. 

The angular velocity vector of the plate is 

(2) (1) (2,1)= +ω ω ω                        (15) 

Where 
(2,1)ω  is the relative angular velocity vector 

between the plate and the submunition. It is expressed as 
follows. 

1

(2,1) (2,1) (2)
z zω=ω k                         (16) 

The generalized velocities are selected as 

(2,1)
p x y z zu x y z ω ω ω ω⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦       (17) 

The velocity vector of (2)c  is 

(2) (2) (1) (1) (2,1)
c c c= = + ×v r r rω                  (18) 

According to the generalized velocities, the velocity and 
angular velocity vector of the plate are expressed as follows. 

10
(2) (2)

1
c p p

p

u
=

= ∑v v , (2) (1) (1) (2,1)
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The derivatives of partial velocity vector (2)
pv  and partial 

angular velocity vector (2)
pω  with respect to time are 

expressed as follows. 

(2) (1) (1) (2,1) (1) (1) (2,1)( )p p p p= + × + × ×v v r rω ω ω , 

(2) (1) (2,1)
p p p= +ω ω ω                           (20) 

Where the relative partial angular velocity vectors 
(2,1)
pω  

and their derivatives 
(2,1)
pω  are shown in the Tab. 2. 

TABLE I.  PARTIAL VELOCITY VECTORS, PARTIAL ANGULAR 
VELOCITY VECTORS AND THEIR DERIVATIVES 

subscript p
partial velocity vectors, partial angular velocity vectors and 

their derivatives 
(1)
pv  (1)

pω  (1)
pv  (1)

pω  

1 i  0 0 0 
2 j  0 0 0 
3 k  0 0 0 

4 0 
1xi  0 

1

(1)
x×ω i  

5 0 1yj  0 
1

(1)
y×ω j  

6 0 1z
k  0 

1

(1)
z×ω k  

7…10 0 0 0 0 

TABLE II.  RELATIVE PARTIAL ANGULAR VELOCITY VECTORS AND 
THEIR DERIVATIVES 

relative partial angular velocity  
vectors and their derivatives 

subscript p 

1…6 7 8…10
(2,1)
pω  0 

1

(2)
zk  0 

(2,1)
pω  0 

1

(2) (2)
z×ω k 0 

 
• Motion description of the parachute 

3o  is taken as the reference point on the parachute that 
coincides with 2o  and the parachute revolves around 3o  
with three degrees of freedom.  

The position vector of the parachute’s centroid is 

3

(3) (3)
c o c= +r r r                            (21) 

Where 
(3)

cr  is the radius vector from the centroid of the 
plate to the centroid of the parachute and it is expressed as 
component forms in the plate coordinate system. 

The angular velocity vector of the parachute is 
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(3) (2) (3,2)= +ω ω ω                         (22) 

Where 
(3,2)ω  is the relative angular velocity vector 

between the parachute and the plate that is expressed as 

1 1 1

(3,2) (3,2) (3) (3,2) (3) (3,2) (3)
x x y y z zω ω ω= + +ω i j k         (23) 

The generalized velocities are selected as 

(2,1) (3,2) (3,2) (3,2)
p x y z z x y zu x y z ω ω ω ω ω ω ω⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  (24) 

The velocity vector of (3)c  is 

3 2

(3) (3) (3) (3) (3)
c o c o c= + × = + ×v r r v rω ω             (25) 

According to the generalized velocities, the velocity and 
angular velocity vectors of the parachute are expressed as 
follows. 

10
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p
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10
(3) (3)
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p p

p

u
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= ∑ω ω , (3) (2) (3,2)
p p p= +ω ω ω              (26) 

The derivatives of the partial velocity vectors (3)
pv  and 

the partial angular velocity vectors (3)
pω  with respect to time 

are expressed as follows. 
(3) (2) (3) (3) (3) (3) (3)( )p p p c p c= + × + × ×v v r rω ω ω  

(3) (2) (3,2)
p p p= +ω ω ω                          (27) 

The relative partial angular velocity vectors (3,2)
pω  and 

their derivatives are listed in the table below.  

TABLE III.  RELATIVE PARTIAL ANGULAR VELOCITY VECTORS AND 
THEIR DERIVATIVES 

relative partial angular 
velocity  

vectors and their 
derivatives 

subscript p 

1…7 8 9 10 

(3,2)
pω  0 

1

(3)
xi  

1

(3)
yj  

1

(3)
zk  

(3,2)
pω  0 

1

(3) (3)
x×ω i  

1

(3) (3)
y×ω j  

1

(3) (3)
z×kω

IV. DYNAMIC MODELS OF THE SYSTEM 

A. Generalized Inertial Force of the System 
The generalized inertial force of each body is  

( )*( ) ( ) ( )

1

n
k k k

p pq q pq q
p

f m u c u
=

= − +∑              (28) 

Where 
( ) ( ) ( ) ( ) ( ) ( ) ( )k k k k k k k
pq p q p qm m= ⋅ + ⋅ ⋅v v Iω ω ， 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )k k k k k k k k k k
pq p q p q qc m= ⋅ + ⋅ + × ⋅v v I Iω ω ω ω ， 

1, 2,3k =                                  (29) 

B. Generalized Active Force of the System 
The generalized active force of each body is 

( ) ( ) ( ) ( ) ( )k k k k k
p p pf = ⋅ + ⋅v F Mω                  (30) 

Where ( )kF  and ( )kM  are resultant force and resultant 
moment that do work on the body k  respectively. 

C. Dynamic Equations of the System 
The dynamic models of the system are 

pq q pq q pm u c u f⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦             (31) 
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V. SIMULATION 
The scan speed of the system mainly depend on the total 

mass of the system and the drag coefficient of the parachute. 
When the drag coefficients are taken as 0.7, 1.17, 1.5, 2, 
respectively, the curves of the scan parameters are shown as 
the figures follows. 
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Figure 4.  Scan speed curves in different drag coefficients 
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Figure 5.  Scan angle curves in different drag coefficients 
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Figure 6.  Stable scan trajectory curve when drag coefficients is 0.7 
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Figure 7.  Scan trajectory curve when drag coefficients is 1.5 

The Figures show that, with the increase of the drag 
coefficients, the scan speed of the system decreases. As a 
result, the scan time increases and the scan trajectory 
becomes intensive. The scan angles are stabilized around 32°, 
that indicate that the drag coefficient has little effect on the 
scan angle. 

VI. CONCLUSION 
The paper provides an applied method for solving the 

problem of dynamic models of the multibody system. This 
method is based on the Kane’s equations and the structure 
and motion descriptions of the system. Taking the parachute-
submuniton system as an object, the structure and motion 

descriptions of are introduced. And the dynamic equations of 
the whole system are established. Combining with some 
concrete examples, the results of the scan parameters are 
calculated. The simulation results are in accordance with the 
flight principle and exterior ballistic theory, which verify the 
reasonableness of the established dynamic model. 
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