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Abstract—Stereo matching is a challenging issue in computer 
vision field. To address the poor accuracy behavior of local 
algorithms, we propose an improved stereo matching 
algorithm based on guided image filter. Firstly, we put forward 
a combined matching cost by incorporating the absolute 
difference and improved color census transform (ICCT). 
Secondly, we use the guided image filter to filter the cost 
volume, which can aggregate the costs fast and efficiently. 
Then, in the disparity computing step, we design a modified 
dynamic programming algorithm, which can weaken the 
scanning line effect. At last, the final disparity maps are gained 
after post-processing. The experimental results are evaluated 
on the Middlebury stereo dataset, showing that our approach 
can achieve good results both in low texture and depth 
discontinuity areas with an average error rate of 5.14%. 

Keywords-stereo matching; census transform; guided image 
filter; dynamic programming 

I.  INTRODUCTION 
Stereo matching is one of the most active research areas 

in computer vision. It refers to the process of estimating the 
scene depth by finding the corresponding points in the 
binocular or multi-ocular images [1]. It is widely used for 
visual reality, object recognition, and depth-image based 
rendering [2]-[5]. Stereo matching algorithms can be 
classified into local and global algorithms. Local algorithms 
compute each pixel’s disparity value in the light of the 
intensity values within a window of finite size [6], [7]. 
However, global algorithms regard stereo matching as an 
energy minimization problem and obtain global disparity 
allocation via optimization methods such as dynamic 
programming (DP) [8], graph cuts [9], and belief 
propagation [10]. 

The traditional matching cost computation methods 
encompass the pixel-based cost, region-based cost, filter-
based cost, and the non-parameter transformation-based cost. 
[11] gave a new idea of combining AD and census transform, 
achieving good results by exploiting the advantages of 
different matching costs computation methods. [12] 
pioneered the use of adaptive weight in the cost aggregation 
process, greatly improving the accuracy of the local stereo 
matching algorithm. This method is actually equivalent to 
the computation of the weight using the bilateral filter, but its 
computational complexity is high. On this basis, many new 
self-adaptive weighting methods are proposed. [13] 
determined the weights by computing the geodesic distance 
between the window pixel and the central pixel, increasing 
the matching accuracy through imposing the connectivity 
constraint. But the computational complexity was not 

reduced. Guided filter has good edge-preserving smoothing 
properties like the bilateral filter, and it does not suffer from 
the gradient reversal artifacts [14]-[16]. To the best of our 
knowledge, it is one of the best edge-preserving filtering. 

To address these problems mentioned above, we combine 
AD and improved color census transform (ICCT) to compute 
matching cost. Then, the guided image filter is used to 
generate the adaptive weight in the process of cost 
aggregation. Moreover, the disparity value is selected using 
the modified dynamic programming algorithm to obtain the 
high-accuracy disparity map quickly and effectively. 

II. ALGORITHMS 
The proposed method is an efficient correlation and 

filter-based local method. An overview of the block diagram 
of the approach is provided in Fig. 1. Firstly, the algorithm 
transforms the images before calculating the matching costs 
under each disparity level. Then we use AD + ICCT to 
measure the similarity between two points and adopt guided 
filter to compute support weights. Finally, in the post-
processing process, we employ three steps including region 
voting, interpolation and weighted median filter for disparity 
refinement. The main components will be discussed in 
details. 

AD+Improved Color 
Census Transform

AD+Improved Color 
Census Transform

Left Image

Guided 
Image Filter

Region 
Voting

LR Consistence 
Check

Weighted 
Median Filter

Disparity 
Map

Right Image

Figure 1. The block diagram of the proposed approach. 

A. Matching cost computation 
Motived by color census transform, we propose an 

improved color census transform. First, we convert the 
image from RGB color space to Gaussian color model 
(GCM) space, because RGB color space is sensitive to 
radiometric. Then the Euclidean distance is used to measure 
the difference between two pixels p  and q . We define 

( )mD p  as the mean value of all these distance in the 
window centered at p . ( )GD q  indicates the distance 
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between p and other pixels in the window centered at p . 
The relation between ( )mD p  and ( )GD q  is defined as: 

( ) ( )( ) ( ) ( ){1,    , 0,   
<= G m

m G
if D q D pD p D q elseξ     (1) 

For each pixel p  in the image I , the census transform 
encodes the local neighborhood around p  to a bit string, 
representing the set of surrounding pixels with lower 
distance value than ( )mD p . The transform results can be 
indicated as: 

( ) ( ) ( )( ),
∈

= ⊗
p

m G
q N

T p D p D qξ               (2) 

Where ⊗  denotes the act of concatenation and pN  is the 
neighborhood area of p . For a particular disparity d , the 
matching cost between a pixel p  in the reference image and 
its corresponding pixel pd  in the matching image, is 
calculated through the Hamming distance. The Hamming 
distance represents the number of unequal elements in the 
two bit streams: 

( ) ( ), ,= = ⊕census p pd p pdC p d Hamming T T T T     (3) 

For image regions with similar local structures, census 
transform could bring in matching ambiguities. Thus, we 
combine the absolute difference in color and the census 
transform to form a more accurate metric. Equation (4) is 
used to calculate the AD value. 

( ) ( ) ( )
, ,

1, ,
3 ∈

= −∑ L R
i i

AD
i R G B

C p d I p I p d          (4) 

Where ( )
L
iI p  denote the intensity values of pixels in the 

reference image and ( ),
R
iI p d  represent the intensity values 

of pixels in the target image. They are both calculated in 
three color channels. 

The final pixel-wise matching cost is defined as (5): 

( ) ( ) ( ), ,
, 1 exp 1 exp

⎛ ⎞ ⎛ ⎞
= − − + − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

AD Census

AD Census

C p d C p d
C p d

λ λ
  (5) 

Where ADλ  and Censusλ  are normalizing parameters. 

B. Guided filter based on adaptive weights 
According to the above definition, we can compute every 

cost for assigning disparity d  at pixel ( ),=p x y . Then we 
use a three dimension array C , which is usually called the 
cost volume or disparity space image (DSI), to store all these 

costs. Each cost can be indexed by ( ),C p d . As pixel-to-
pixel comparison is too sensitive to noise, it is common to 
aggregate the matching costs in a support region usually 
defined by a window. To improve the accuracy of matching 
results, the method of adaptive weights was developed and 
has been widely used for its great effectiveness. In [12], the 
aggregation step was formulated as: 

( )
( ) ( ) ( )

( ) ( )
,

,

, , ,
,

, ,
∈ ∈

∈ ∈

=
∑
∑

p d pd

p d pd
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p q p q C q d
p d

p q p qC
ω ω

ω ω
   (6) 

Where pN  and 
dpN  are the set of pixels in the support 

window of corresponding pixels p and dp  respectively. 
( ),p qω  and ( ),d dp qω  are the designated weights in the 

reference and target windows. The denominator is used to 
normalize the weights. As combining the support weights in 
both windows only helps to improve correspondence search 
slightly, we can omit the term of ( ),d dp qω . Thus the 
following equation is obtained. 

( ) ( ),, ,
∈

= ∑
p

p qq N
C p d W C q d                (7) 

In this way, cost aggregation is used to compute the 
weighted average in a support window for every pixel. It can 
be implemented by smoothing the cost volume with a filter. 
So the weights are defined by the filter kernels. In fact, the 
method in [12] is equivalent to the bilateral filtering. Here 
we use the newly developed guided filter to compute weights. 
Guided filter gives a weight between two pixels p  and q , 
according to their statistical analogy of the reference 
intensities based on the averages and the variances of several 
squared windows. For color guidance images, the weight is 
described as follow: 

( )( ) ( )( )T

, 2 2
k

1 1
σ + U∈ ∩

⎛ ⎞− −
⎜ ⎟= +
⎜ ⎟
⎝ ⎠

∑
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p q

k k
p q

k

p q
W

ω ω εω
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Where, ( )I p  , ( )I q  and μk  are 3×1 vectors as they 
have R , G , B  channels. 2

kσ  and U  are 3×3 matrixes. μk  
and 2

kσ  are the mean and co-variance matrix of I  in a 
square window with dimensions ×r r  centered at pixel k . 
The number of pixels in this window is denoted with ω . ε  
is a smoothness parameter and U  is an identity matrix. 
Guided filter has an edge-preserving property which can be 
easily understood by investigating the above equation. 
Parameter ε  controls the strength of smoothing and can be 
tuned experimentally. To show the property of guided filter 
intuitively, we visualized the filter weights for some image 
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regions in Fig. 2. In order to observe different image areas 
clearly, we gave the partial enlarged views.  

 
Figure 2. The demonstrations of generating adaptive weight by using guided 

filter. 

The weights are high in regions which are self-similar to 
the central pixel and low otherwise, agreeing with the local 
image structure. 

In the real implementation, instead of computing ,p qW  
explicitly, the guided filter can be performed in the following 
equivalent way: 

( ) ( ), = +a p pC p d I p b                    (9) 
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( ) T,= −k kkb C k d a μ                    (11) 

I  is the reference image and acts as the role of guided 
image. a p  and pb  are the average of ak and kb in the square 

window kω  which involves p . ( ),C k d  is the mean of 

input cost slice ( ),⋅C d  in kω . 

C. Disparity selection 
Dynamic programming (DP) is a technique used to solve 

a complex problem by breaking it down into several sub-
problems. It solves each sub-problem each time, which 
greatly reduces the computational complexity. DP-based 
algorithms formulate stereo correspondence as a least-cost 
path finding problem. Given an image scanning line 

( ){ },= ⋅yS p y , DP finds an optimal path through a 2D slice 

( ); ;⋅ ⋅C y  of the 3D cost-volume. The optimal path is 
equivalent to a disparity assignment function ( )d p  that 
minimizes the global energy function: 

( ) ( ) ( )= +data smoothE d E d E d             (12) 

Here, the data term comes directly from the aggregated 
matching costs, which is defined in (13). The smoothness 
term is defined in (14): 

( ) ( )
( ),

, ,= ∑data
x y

E d C x y d                     (13) 

( ) ( ) ( )
( ),

, 1,= − −∑smooth
x y

E d d x y d x yλ          (14) 

The smoothness term implicitly assumes that the 
disparity changes smoothly and imposes penalty for abrupt 
change of disparity. We modified the traditional dynamic 
programming (DP) algorithm and proposed the WTA 
guidance-based DP algorithm. The proposed DP algorithm 
will be described in details below: 

Consider the scan line y  in the reference image. Each 
pixel ( ),=p x y  is visited from left to right. Its energy 
corresponding to all disparities d  is computed. At the same 
time, minimum energy and the position of the corresponding 
disparity are saved. This can be given by: 

( ) ( )
[ ]

( )( )
max' 0,

, , , ,
min 1, , ' '
∈

= +
− + −

d d

M x y d C x y d
M x y d d dλ   (15) 

Where ′d  denotes the disparity of ( )1,′ = −p x y , which 
is the neighboring pixel of p . The dynamic programming 
algorithm mentioned above has a computation load of 
( )2O WD  for each scan line, where W  denotes the image 

width and D  denotes the disparity range. So it is not suited 
for real-time applications. To reduce the computational load, 
we consider the disparity smoothness assumption. By 
assuming that the disparity of p ’s neighboring pixel is close 
to that of p  and limiting the value of ′d  within 
{ }1, , 1− +d d d , we obtain the modified equation as follows: 

( ) ( )
[ ]

( )( )
' 1, , 1

, , , ,
min 1, , ' '

∈ − =

= +
− + −

d d d d

M x y d C x y d
M x y d d dλ    (16) 

The computational complexity of the modified algorithm 
is ( )O WD , but the disparity computed by the simplified 
algorithm changes too slowly in the depth discontinuity areas. 
This may blur the depth edges and cause the scan line effect. 
To avoid the over-smoothing phenomenon, the original 
disparity image from the WTA method is used to guide the 
dynamic programming process. The core idea is to provide 
an additional disparity candidate for the dynamic 
programming process by using WTA method. The original 
disparity image 0d  is computed by (17). For the pixel 
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( ),=p x y , let ( )0 1,−d x y  be the fourth disparity candidate 
of ′p  : 

( ) ( )
( )

( )( )
0' 1, , 1, 1,

, , , , +
               min 1, , ' '

∈ − + −⎡ ⎤⎣ ⎦

=
− + −

d d d d d x y

M x y d C x y d
M x y d d dλ (17) 

Because the original disparity image 0d  has been 
computed at the beginning, the computational complexity of 
the modified dynamic programming algorithm (WTA-DP) is 
not increased, which is still 0d  . 

D. Disparity post-processing 
There are some mismatches in the original disparity 

images, so it needs to be post-processed. First, left-right 
consistency check is adopted to detect occluded points. Let 

( )Ld p  denotes the left disparity image and ( )Rd p  denotes 
the right disparity image. If the disparity of the point is not 
consistent with that of its corresponding point, 

( ) ( )( )≠ −L R Ld p d p d p . Then we regard the point p  as the 
occluded point and label its disparity value as zero. Next, we 
search the scan line, which point p  locates on, for the first 
non-occluded point at its left and right directions, Afterwards 
the occluded point is filled by selecting the smaller disparity 
value as the disparity of the occluded point. Finally, the 
weighted median filter is used to smooth the disparity image 
and obtain the final disparity image. 

III. RESULTS 
To validate the effectiveness of the proposed algorithm, 

C Language was used to implement the proposed algorithm. 
The experiments were carried out on the standard stereo 
image pairs from the recognized Middlebury Platform [17] 
for testing stereo matching algorithms. This website provides 
four groups of baseline color image pairs: Tsukuba, Venus, 
Teddy, and Cones. The quantified matching errors are 
obtained by comparing the experimental results with the 
ground truth, thus enabling the algorithm’s accuracy to be 
evaluated objectively. Unless specified description, the 
parameter setting of all experiments is as follows: 

{ } { }, , , , , 45,30,15,50,9,0.0001=AD C G rλ λ λ β ε        (18) 
Fig. 3 intuitively shows the accuracy of the proposed 

algorithm. The experimental results of Tsukuba, Venus, 
Teddy, and Cones are sequentially given in Fig. 3(a)-(d). In 
this figure, the first column is the original image. The second 
column displays the related ground truth. The disparity 
image from the proposed algorithm is given in the third 
column. The fourth column presents the mismatched pixel 
image of the proposed algorithm. In the fourth column, the 
large white areas are the correctly matched points, whereas, 
the grey and black areas represent the mismatched points in 
the occluded areas and the non-occluded areas, respectively. 
It can be seen that the disparity image of the proposed 
algorithm is smooth overall, and it is capable of achieving 
desired matching results in the less-textured areas and 
disparity edges. 
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Figure 3. The comparison of the results. (a) The four reference images, from top to bottom, they are Tsukuba, Venus, Teddy, and Cones. (b) Ground Truth 

maps. (c) Matching results using the proposed method. (d) Error maps using the proposed method. 

TABLE I. AVERAGE PERCENTAGE OF BAD PIXELS WITH DISPARITY ERROR THRESHOLD OF 1 USING THE MIDDLEBURY BENCHMARK 

Algorithms 
Tsukuba Venus Teddy Cones Average

Error nooocc all disc nooocc all disc nooocc all disc nooocc all disc 
Proposed 1.41 1.74 6.86 0.17 0.33 1.87 5.62 10.7 15.1 2.64 7.86 7.37 5.14 

DTAggr-P [18] 1.75 2.10 7.09 0.24 0.45 2.59 5.70 11.5 13.9 2.49 7.82 7.30 5.24 
HEBF [19] 1.10 1.38 5.74 0.22 0.33 2.41 6.54 11.8 15.2 2.78 9.28 8.10 5.41 

GlobalGCP [20] 0.87 2.54 4.69 0.46 0.53 2.22 6.44 11.5 16.2 3.59 9.49 8.9 5.60 
ASSW [21] 1.81 2.17 7.58 0.32 0.51 3.73 7.02 12.5 17.4 3.21 8.40 8.99 6.16 

 
The obtained disparity image can be compared with the 

ground truth to evaluate the accuracy of the algorithm 
objectively by defining the accuracy as the proportion of 
the mismatched pixels. And the mismatched pixel is 
defined as the point whose absolute difference with the 
ground truth is larger than 1: 

( )
( ) ( )( )

,

1 , ,= − >∑ C T d
x y

B d x y d x y
N

δ        (19) 

Where ( ),cd x y  denotes the computed disparity image, 

( ),Td x y  represents the true disparity map, N  denotes the 
total number of pixels, and dδ  denotes the specified error 
threshold. The point whose matching difference with the 
true disparity map is over 1 pixel is regarded as the 
mismatched point. Table I provides the percentage data of 
mismatched pixels for the proposed algorithm when 

1=dδ . From the table, it can be seen that the matching 
accuracy of the proposed algorithm is higher than the 
compared stereo matching algorithms. 

(d) (c) (b) (a) 
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IV. CONCLUSION 
A novel local stereo matching algorithm which can 

obtain the disparity image accurately is proposed in this 
paper. A combined matching cost based on AD and 
improved color census transform is adopted to overcome 
the disadvantages of the single matching cost. We perform 
the adaptive cost aggregation by filtering the cost volume 
using the guided image filter. Moreover, a modified 
dynamic programming algorithm is used to weaken the 
scanning line effect from the obtained disparity image. The 
experimental results on Middlebury platform show that 
our method performs well among the local stereo matching 
methods. 
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