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Abstract—The concept of vector valued Dirichlet series
was introduced by B. L. Srivastava [2] who
characterized the growth of entire functions represented
by these series. In this paper we introduce the
generalized order of analysis functions fast growth.
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l. INTRODUCTION
Let

+00
f(s)=> ae™ (s=o+itoteR) (1
n=0

Where a, 'S belong to a complex commutative Banach

algebra B with identity element ||a)||=1 and \,'seR

satisfy the conditions
0= <A <A <<\ THoo
——log|la, —_—
lim M:O, lim n_ D <+o0, (2
n—-+o0 )\n n—+o00 )\n

Then, the vector valued Dirichlet series in (1) represents
an analytic function f(S) in right plane (see [1]). For the
vector valued analytic function f (S) defined as above by

(1) the maximum modulus, the maximum term and the
index of maximum term are defined as

M(o, f)= sup {f (@ +i[}

—oo<t<+o0

m(o, f)= rpeaNxﬂ|an||e M}

The order p of f(S) is defined as

+ +

p:mlog log™ M (o, f).
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We shall call the vector valued analytic function f (S)
to be of fast growth if the order p =o0. We obtain the

characterization of growth parameters in the context of
generalized order of vector valued Dirichlet series of fast
growth.
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Let A, be the class of all functions S satisfying the
following two conditions:
(i) B(X) is defined on [a,20), a >0, and is positive,

strictly increasing, differentiable and tends to oo as
X —>0;

da(x
iy 350
dlog x
For a vector valued analytic function f(s) given by (1)
and fB(X) €A, set

=0(1) as X > 0.

5. T 200a” M (@, 1)
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Then p(G, f) will be called, respectively, /3 -order of
f(s) . To avoid some trivial cases we shall assume
throughout that M (o, f) — 0o as 0 — 0.

Il.  MAINRESULTS
Lemma 2.1 If the vector valued Dirichlet series given by
(1) satisfies (2), then
1
m(o, f)<M(o, f)<K(e)m(o(l-¢), f)=,
o

Where K (&) is a positive number of £ and f(S).
Proof: From the second equation of (2), for given & >0,
there exists an N, =nN,(g) , such that for n>n,,

n<(D+¢)A,.Taken 0 <0, ¢€(0,—0), we have

M@, D)X oo™ + 3 afe e
n=1

n=n,

<nm(c, f)+m(l-¢)o, f) DY e ")
n=ny+1

m((1-¢)o, )
< nom(O', f ) + W

The lemma now follows from above and the well known
relation m(o, f) <M (o, f)

Theorem 2.1 If the vector valued Dirichlet series given
by (1) satisfies (2), then

p(ﬂ’ f) ZMﬂ(Iog+ m(U, f))
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Proof: By the first inequality of Lemma 2.1, this gives,
since B €A, that

— B(log” M (o, f))
—logo

fim Allog’ m(c 1))

—logo

<lim

o—0
By the second inequality of Lemma 2.1, we have

log®* M, (o, F)

<log"m(c(l-¢), f)—logo+0(2)

<Clog"m(c(l-¢), f)-(~logo) (4)

For all o(o>0) sufficiently close to 0. Here Cisa
constant. Now, (4) gives

B(log” M (o, 1))

)98

< B(log* m(o(1- &), m)) +log((—log o)° dlog X

x=x"(o)

Where log" z{o(l-&),F) <X (6)< Clog" s(o(1—&),F)- .
(=log o). This easily gives

i Aog"M (o, 1))
—logo

fimZ0g” m(o. 1))

—logo
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The theorem follows from (3) and (5).
Theorem 2.2 If the vector valued Dirichlet series given

by (1) satisfies (2) and has £ -order p(3, ), then

B
f _
p(0. 1) =i oclog>\ “log” log|[a, |
Proof: Let lim 5h) =0 . Clearly
n—xlog A, —log” log | a, ||

0<f@<oo. First let 0<@ <o . Then, for 0<e< @
there exist a sequence {n, } = N such that

B (ﬁnk )

log|la, >4, exp{— } k=123,

By Lemma 2.1, we have
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log* M (o, ) >log* m(c, f) 2 log||a, [|—o4,

B (/Ink )

> A, exp{- } o, (6)

M} . Putting,

For k=1,2,3,---, set o, :%exp{—

in particular, o = o, in (6) ,we get

log* M (o, , f)>1/1n exp{- A nk)} A o,
2 'k 0 k k
Or
B(log” M(a,, £)) > B4, ) = (0-£)log(=—)
oy 20,

Since f €A, we have

B 1ogM (o, 1))

Ok
~o(1)(log(—log M (,, 1))

Oy

=0(1) Iog(i) +0(2)loglogM (o, f)
o g(_) ds(x)

o, dlogx

+B(ogM (o, f)) (7)

X=X (o)

where logM (o, f) <X (O'k)<i|OgM(O'k, f) .

Oy

dg(x)
d Iog X

>(0-¢) Iog(g)

By (7), we have

p(log" M (o, f)) + |Og(

)

X=X (Gk)

. 1 .
, dividing by log(—) and passing to

Since feA,
Oy
limits, we get
p(B, ) >0 (8)
(8) is obvious for &=0. For =00, the above

arguments with an arbitrarily large number in place of
0—¢ give p(6,F) =00

To prove the reveres inequality, since there is nothing to
prove if # =0c0, we may assume that 6 < oo. Then,

given £ >0 andforall n>n, =n,(g) we have



A
loglla, < 4, exp-2%)y )
Q+c¢

Now the second equation of (2) holds, we have
n<D/”L n>n, _n(D)’Where D>D js 4
n, = max{n,,n,}

r all

fixed constant. Let
have

, then from (9), we

ﬂ()
)

M (o, f)<Zexp{/1 exp(—

3 oG

n=ng+1

For every o(o>0) we define n(a) as

oty S B (O +€)|09(—)) <Aooy

o(o>0)

i) o}

For
n(o)>n

is sufficiently close to 0, we have

3. Thus, we have

o0

Y. exp{4, exp(—

n=n(o)+1

< Z exp{

n=n(o)+1

ﬂ()

ae) Y

- —on
< expy—
Z 5t

n=n(o)+1

el a(nz(g) +1),

—O
1-exp{—=
p{zD}

<

=H(n(0)).

Now,

log H (n(c)) = —2 (@) +1)

+ Iog£+ oQ
(o}

<
X(o)
X(o) =

Where O . Clearly X(@) > ® o 0—>0

Since B EAO, it follows that '[)r (QIOQX(G))>(X(G))
forall O sufficiently close to 0. This shows that

logH (n(c)) > o as o >0
or

H(n(o)) >0as o —0. (10)

() = xexp{—%}— Xo

Consider the function
Taking derivative of @(x) and setting it equal to O we get
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: B(x) 1 dB(x)
X) = exp{— 1- -0=0
¢ ) P 0 X 0+gd|ogx) o
450D _ o
Since 109X as X = % it follows that
i<1—LM<2 for X > X,.
2 0+ ¢ dlogx
Let /1”0 be a fixed A greater than %o and ™, then
@'(4,)>0 for 0<0 <01 Al @' (An(oyia) <0 for
1 050 <0, \ow for 0 <C < =Min(cy,0,) '
we denote by x.(0) the point  where
X = maX X
¢( (G)) O—X (o) ¢( ) 1 then Aho <X‘(O-)<//ih(0')+1
and
X.(0) = 7 (~(0+¢) log——)
1-d(o)”’
1 dp(x
d(o) - LAY
0+ ¢ dlogx

x=x(2) "and so

max {llalle"} < exp{p(x.(o))}
) o}

<exp{~(-(0+¢)log 1- g(a) 1-d(o)

~of3 " (~(0+¢)log )}

od(o)
1-d(o)

Where

O
1-d(o)
) O

o
1-d(o)’1-d(0)

<expl——=% B (—(0+¢)log

<exp{cB(~(0 + &) log %)} (11)

e F)<P(n0)+2exp{/1 exp(— ﬂ( )) 1o}

(ﬂ()

+ Z exp{4, exp(-—"2) - 4 o}
n=n(c)+1

Where P(n,) , the sum of first n, terms, is bounded.

Using (10), (11) and definition of n(o) ,
inequality gives
M(o,F)

< P(n,) +n(c)exp{oB *(-(0 + £) log %) +o(1)

A,

the above
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<P(n,)+ DB (~(0+¢)log %)-

exp{af 1 (~(0+¢)log %)}+ o())
Or

log* M, (o, F) < 6™ (—(6+¢) log %)(u o(1).

Ao , this easily gives

p(p.F) <6

The theorem now follows from (8) and (12).

Since pe
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