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Abstract—The concept of vector valued Dirichlet series 
was introduced by B. L. Srivastava [2] who 
characterized the growth of entire functions represented 
by these series. In this paper we introduce the 
generalized order of analysis functions fast growth. 
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I.  INTRODUCTION 
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Where 'na s  belong to a complex commutative Banach 

algebra B  with identity element 1ω =  and 'n sλ ∈  
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Then, the vector valued Dirichlet series in (1) represents 
an analytic function ( )f s  in right plane (see [1]). For the 
vector valued analytic function ( )f s  defined as above by 
(1) the maximum modulus, the maximum term and the 
index of maximum term are defined as 
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The order ρ   of ( )f s   is defined as 
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We shall call the vector valued analytic function ( )f s  
to be of fast growth if the order ρ = ∞ . We obtain the 
characterization of growth parameters in the context of 
generalized order of vector valued Dirichlet series of fast 
growth. 

Let 0Δ  be the class of all functions β  satisfying the 
following two conditions: 

(i) ( )xβ  is defined on [ , )a ∞ , 0a > , and is positive, 
strictly increasing, differentiable and tends to ∞  as 
x →∞ ; 
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For a vector valued analytic function ( )f s   given by (1) 

and 0( )xβ ∈Δ , set 
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Then ( , )fρ β  will be called, respectively, β -order of 
( )f s . To avoid some trivial cases we shall assume 

throughout that ( , )M fσ →∞  as 0σ→ . 

II.  MAIN RESULTS 
Lemma 2.1 If the vector valued Dirichlet series given by 

(1) satisfies (2), then 
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Where ( )K ε  is a positive number of ε  and ( )f s . 
Proof: From the second equation of (2), for given 0ε > , 
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The lemma now follows from above and the well known 
relation ( , ) ( , )m f M fσ σ≤  

Theorem 2.1 If the vector valued Dirichlet series given 
by (1) satisfies (2), then 
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Proof: By the first inequality of Lemma 2.1, this gives, 
since 0β ∈Δ , that 
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By the second inequality of Lemma 2.1, we have 
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constant. Now, (4) gives 

(log ( , ))M fβ σ+  

* ( )

d ( )(log ( (1 ), )) log(( log ) )
d log

C

x x

xm m
x σ

ββ σ ε σ+

=

≤ − + − ⋅  

Where *log ( (1 ), ) ( )F xμ σ ε σ+ − < < log ( (1 ), )C Fμ σ ε+ − i . 
( log )σ− . This easily gives 

0 0

(log ( , )) (log ( , ))lim lim
log log
M f m f

σ σ

β σ β σ
σ σ

+ +

→ →
≤

− −
 (5) 

The theorem follows from (3) and (5). 
Theorem 2.2 If the vector valued Dirichlet series given 

by (1) satisfies (2) and has β -order ( , )fρ β , then 
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(8) is obvious for  0θ = . For θ = ∞ , the above 
arguments with an arbitrarily large number in place of  
θ ε−   give ( , )Fρ β =∞ . 

To prove the reveres inequality, since there is nothing to 
prove if θ=∞ , we may assume that  θ<∞ . Then, 
given 0ε >   and for all 1 1( )n n n ε> =   we have 
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Now the second equation of (2) holds, we have  
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Using (10), (11) and definition of ( )n σ , the above 
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The theorem now follows from (8) and (12). 
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