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Abstract. In this paper, a generalization of differential electromagnetic equations in fractional space 
is provided. These equations can describe the behavior of electric and magnetic fields in any fractal 
media. The time evolution of the fractional electromagnetic waves by using the time fractional 
Maxwell’s equations in fractional space has been investigated. Theoretical analysis shows that the 
amplitude variations of the general plane wave solution not only is related to Bessel functions, but 
also reveals an algebraic decay, at asymptotically large times. 

Introduction 
In recent years, fractional calculus has attracted many researchers successfully in different 

disciplines of science and engineering. One of the main advantages of the fractional calculus is that 
the fractional derivatives provide a superior approach for the description of memory and hereditary 
properties of various materials and processes [1-3]. Applications of fractional calculus in the field of 
mathematics, chemistry, physical, biology and engineering have gained considerable achievement 
and many significant results were obtained [4-7]. More and more researchers are finding that 
numerous important dynamical problems exhibit fractional order behavior which may vary with space 
and time. This fact illustrates that fractional calculus is a natural candidate to provide an effective 
mathematical framework for the description of complex dynamical problems. Some materials and 
media that have electromagnetic memory properties can be expressed by fractional nonlocal 
formalism. Therefore the generalized fractional Maxwell’s equations can give us many new models 
that can be used in complex systems. 

In the last few decades, there has been considerable interest in the study of physical description of 
confinement in low dimensional systems assuming a fractional dimension of the space [8-10]. The 
idea to take place of the real confining structure by a space, where the measure of confinement or 
anisotropy is given by non-integer dimension, was proposed in [11]. Such confinement may be 
described in low dimensional systems which can have various degrees of confinement in various 
orthogonal directions. In [12] fractal structures had been discussed within the fractional dimensional 
space approach. Axiomatic basis for the idea of fractional space for two-spatial coordinate space was 
given in [13], and this work was extended to orthogonal coordinate space in [8]. Stillinger [13] 
studied a formalism for constructing a generalization of an integer dimensional Laplacian operator 
into a non-integer dimensional space. Engheta [14, 15] introduced an early investigation of fractional 
solution of wave equation. Zubair and Mughal [16] developed an exact solution of the cylindrical 
wave equation for electromagnetic field in fractional dimensional space. 

The aim of this work is to study the time evolution of the fractional electromagnetic waves by 
means of the time fractional Maxwell’s equations in fractional space. For this purpose, in the 
following section we review electromagnetic theory. 

Fractional space generalization of differential Maxwell’s equations 
The Maxwell’s equations are the fundamental equations describing the property of electric and 

magnetic fields. The basic classical Maxwell’s equations in differential form as following: 
vρ∇ ⋅ =D                                                                                                                                            (1) 

0∇⋅ =B                                                                                                                                              (2) 
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t
∂

∇× = −
∂
BE                                                                                                                                       (3) 

t
∂

∇ × =
∂
DH J +                                                                                                                                   (4) 

the quantities are dealt with: 
E =electric field intensity ( / )V m ; 
H =magnetic field intensity ( / )A m ; 
D =electric flux density 2( / )C m ; 
B =magnetic flux density 2( / )W m ; 
J =electric current density 2( / )A m ; 

vρ =electric charge density 3( / )C m , 
with = µB H and = εD E , where µ and ε are permeability and permittivity of the medium, 
respectively. All of these quantities are functions of space variables , ,x y z and time t . 

We may simply introduce the generalized form of Maxwell’s equations in D -dimensional 
fractional space, more detailed introduction can be found in the Ref. [17]. The differential form of 
Maxwell’s equations in far-field region in fractional space are given by: 

D vρ∇ ⋅ =D                                                                                                                                          (5) 
0D∇ ⋅ =B                                                                                                                                            (6) 

D t
∂

∇ × = −
∂
BE                                                                                                                                      (7) 

D t
∂

∇ × =
∂
DH J +                                                                                                                                   (8) 

where Del operator D∇ in fractional space is expressed as: 

31 2 11 11 1 1ˆ ˆ ˆ
2 2 2D x y z

x x y y z z
αα α  −− −∂ ∂ ∂  ∇ = + + + + +    ∂ ∂ ∂    

                                                         (9) 

where the parameters 10 1α< ≤ , 20 1α< ≤ , and 30 1α< ≤ are used to describe the measure 
distribution of space where each one is acting independently on a single coordinate and the total 
dimension of the space is 1 2 3D α α α= + + . Obviously, if we set 1 2 3 1α α α= = = , the fractional Del 
operator D∇ reduces to the classical Del operator ∇ . 
Now, introducing the potentials, vector A and scalar ϕ  

D= ∇ ×B A                                                                                                                                         (10) 

D t
ϕ

∂
= −∇ −

∂
AE                                                                                                                                 (11) 

Then we obtain the following differential equations for the potentials: 
2

2
2

v
D t

ρϕ
ϕ µε

ε
∂

∇ − = −
∂

                                                                                                                       (12) 

2
2

2D t
µε µ

∂
∇ − = −

∂
AA J                                                                                                                      (13) 

To write the generalization of Maxwell’s equations (5)-(8) in the fractional with respect to t , by 
replacing the time derivative with a fractional derivative of order (0 1)α α< ≤ namely: 

D vρ∇ ⋅ =D                                                                                                                                         (14) 
0D∇ ⋅ =B                                                                                                                                          (15) 

1

1
D t

α

α αξ −

∂
∇ × = −

∂
BE                                                                                                                        (16) 
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1
D t

α

α αξ −

∂
∇ × =

∂
DH J +                                                                                                                     (17) 

and Eq.(10) and (11) become 
D= ∇ ×B A                                                                                                                                        (18) 

1

1
D t

α

α αϕ
ξ −

∂
= −∇ −

∂
AE                                                                                                                       (19) 

In above equations the fractional derivative of order α , 1n nα− < ≤ , n N∈ is defined in the Caputo 
sense [18]: 

* ( )

10

( ) , ;
( )

1 ( ) , 0 1 .
( ) ( )

n

n

nt

n

d f t n N
dtD f t

f T dT n n
n t T

α

α

α

α
α − +


= ∈= 

 ≤ − < <
Γ − −

∫
                                                                  (20) 

where ( )Γ ⋅ denotes the Gamma function. For ,n n Nα = ∈ the Caputo fractional derivative is defined 
as the standard derivative of order α . Also, we should note that the arbitrary quantity ξ with 
dimension of [second] is to ensure all quantities have correct dimensions. Now we can get the 
corresponding time fractional wave equations for the potentials 

2
2

2(1 ) 2

1 v
D t

α

α α

ρϕϕ µε
ξ ε−

∂
∇ − = −

∂
                                                                                                           (21) 

2
2

2(1 ) 2

1
D t

α

α αµε µ
ξ −

∂
∇ − = −

∂
AA J                                                                                                           (22) 

If 0vρ = and 0=J , we have the homogeneous fractional differential equations 
2

2
2(1 ) 2

1 0D t

α

α α

ϕϕ µε
ξ −

∂
∇ − =

∂
                                                                                                                  (23) 

2
2

2(1 ) 2

1 0D t

α

α αµε
ξ −

∂
∇ − =

∂
AA                                                                                                               (24) 

In above equations, 2
D∇  is the Laplacian operator in D -dimensional fractional space and is 

defined as follows 
2 2 2

2 31 2
2 2 2

11 1
D x x x y y y z z z

αα α −− −∂ ∂ ∂ ∂ ∂ ∂
∇ = + + + + +

∂ ∂ ∂ ∂ ∂ ∂
                                                                 (25) 

   Eq.(23) and Eq.(24) are the same form, we can write the fractional equations in the following 
compact form 

2 2
1

2 2(1 ) 2

1 1 ( , )( , ) 0Z x tZ x t
x x x t

α

α α

α
µε

ξ −

 −∂ ∂ ∂
+ − = ∂ ∂ ∂ 

                                                                         (26) 

where ( , )Z x t represents both A and ϕ . Analytical solutions of Eq.(26) can be obtained by using 
separation of variables to get the fields inside the fractional space. We consider 

( , ) ( ) ( )Z x t u x v t=                                                                                                                               (27) 
and the resulting ordinary differential equations are obtained as follows 

2
21

2

1 ( ) 0x
d d u x
dx x dx

α
γ

 −
+ − = 

 
                                                                                                         (28) 

22
2(1 )

2 ( ) 0xd v t
dt

α
α

α

γ
ξ

µε
− 

− = 
 

                                                                                                              (29) 

where xγ is known as wave constants in the x direction and will be determined using boundary 
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conditions. Let 
2

2 2(1 )x αγ
ξ

µε
−Ω = , then Eq.(29) will be 

2
2

2 ( ) 0d v t
dt

α

α

 
− Ω = 

 
                                                                                                                        (30) 

The solution of Eq.(30) may be 
2 2

2( ) ( )v t E t α
α= Ω                                                                                                                              (31) 

where 
0

( )
(1 )

k

k

zE z
kα α

∞

=

=
Γ +∑ is one parameter Mittag-Leffler function. 

Let 1 1a α= − , Eq.(28) can be written as  
2

2
2 ( ) 0x

d dx a x u x
dx dx

γ
 

+ − = 
 

                                                                                                           (32) 

Eq.(32) is reducible to Bessel’s equation by substituting ( ) ( )nu x x xη= as follows: 
2

2 2 2 2
2 ( ) 0x

d dx x x n x
dx dx

γ η
 

+ − − = 
 

                                                                                                (33) 

where 
1

2
a

n
−

= , the solution of Bessel’s equation in Eq.(33) is given as [19]: 

1 2( ) ( ) ( )n x n xx C J j x C Y j xη γ γ= − + −                                                                                                    (34) 

where 
2

0

( 1)( )
! ( 1) 2

k nk

n
k

xJ x
k k n

+∞

=

−  =  Γ + +  
∑ is referred to the Bessel function of the first kind of order 

n and ( )cos( ) ( )( )
sin( )

n n
n

J x n J xY x
n
π
π

−−
= as the Bessel function of the second kind of order n . 1C and 

2C are constant coefficients. 
Finally, the solution of Eq.(28) becomes 

1

1 11 2( ) ( ) ( )n
n x n xu x x C J j x C Y j xγ γ = − + −                                                                                            (35) 

where 1
1 1

2
n α

= − . 

Substituting Eq.(35) and Eq.(31) into Eq.(27), we obtain the analytical solutions of Eq.(26) as follows 
1

1 1

2 2
1 2 2( , ) ( ) ( ) ( )n

n x n xZ x t x C J j x C Y j x E t α
αγ γ = − + − Ω                                                                      (36) 

Asymptotic behavior of the solution 
   In contrast with the exponential decay of the usual standard form of the equations, the algebraic 
decay of the solutions of the fractional equations in fractional space is most important effect of the 
fractional derivative in the typical fractional equations. We consider the integral form for the 
Mittag-Leffler function to describe this algebraic decay. The asymptotic expansion of ( )E zα based on 
the integral representation in the form [20]: 

11( )
2

t

Y

t eE z dt
j t z

α

α απ

−

=
−∫                                                                                                                      (37) 

where Re( ) 0, , z Cα α> ∈ and the path of integration Y is a loop starting and ending at −∞ and 

encircling the circular disk 
1

t z α≤ in the positive sense arg t π< on Y . Eq.(37) can be used to 
obtain the asymptotic expansion of the Mittag-Leffler function at infinity. According to the property 
of Mittag-Leffler function, we can obtain the following cases. 
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   If 0 2α< < and θ is a real number such that min[ , ]
2

πα
θ π πα< < , then for , 1N N N′ ′∈ ≠ , there 

holds asymptotic expansion as follows: 
11

1
1

1 1 1 1( )
(1 )

N
z

r N
r

E z z e O
r z z

α
β

α
α α α

− ′

′+
=

 = − +  Γ −  
∑                                                                                (38) 

as z → ∞ , arg t θ≤ and 

1
1

1 1 1( )
(1 )

N

r N
r

E z O
r z zα α

′

′+
=

 = − +  Γ −  
∑                                                                                                 (39) 

as z → ∞ , arg tθ π≤ ≤ . In our case, 2 2z t α= Ω then 

2 2
2 2 2

1 1( )
(1 2 )

E t
t

α
α αα

Ω ≈ −
Γ − Ω

                                                                                                       (40) 

Substituting Eq.(40) into Eq.(36), we have 
1 1

1 11 2
2 2 2 2

( ) ( )
( , )

(1 2 ) (1 2 )

n n
n x n xx J j x x Y j xC CZ x t

t tα α

γ γ

α α

− −
≈ − −

Γ − Ω Γ − Ω
                                                         (41) 

From the result of Eq.(41), we can achieve the asymptotic for the electromagnetic wave equation 
which represents a general plane wave solution with algebraic time-decaying amplitude. In other 
word fractional differentiation with respect to time can be explained an existence of memory effects 
which correspond to intrinsic dissipation in our system. 

An example 

For the case 1
4

α = , we have 
4 42 2 2

1
2

( ) ( ) (1 ( )) ( )t tv t E t e erf t e erfc tΩ Ω= Ω = + Ω = −Ω                                                                 (42) 

where erfc denotes the complimentary error function and the error function is given by 
2

0

2( )
z terf z e dt

π
−= ∫ , ( ) 1 ( )erfc z erf z= − ,  z C∈                                                                            (43) 

For large values of z , the complimentary error function can be approximated as 
21( ) zerfc z e

zπ
−≈                                                                                                                             (44) 

Substituting Eq.(42) into Eq.(36), we get 
4

1

1 1

2
1 2( , ) ( ) ( ) ( )n t

n x n xZ x t x C J j x C Y j x e erfc tγ γ Ω = − + − −Ω                                                            (45) 
At asymptotically large times, and using Eq.(44), we obtain 

1

1 11 2 2

1( , ) ( ) ( )n
n x n xZ x t x C J j x C Y j x

t
γ γ

π
 ≈ − − + −  Ω

                                                                    (46) 

For this case, the solution represents general plane wave with time decaying amplitude. 

Summary 
The asymptotic behavior of Mittag-Leffler functions plays a significant role in understanding of the 
solutions of different problems of physic connected with fractional phenomena that occur in fractional 
space. We have discussed the time evolution of the fractional electromagnetic waves in fractional 
space by using the time fractional Maxwell’s equations. We pointed that the amplitude of the general 
electromagnetic plane wave is described by Bessel functions, and it also exhibits an algebraic decay 
with time increasing in our system. 
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