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Abstract. In this paper, a numerical method for solving a class of fractional partial differential 
equations with variable coefficients based on Chebyshev polynomials is proposed. The fractional 
derivative is described in the Caputo sense. The properties of Chebyshev polynomials are used to 
reduce the initial equations to the products of several matrixes. A system of linear equations are 
obtained by dispersing the coefficients and the products of matrixes. Only a small number of Chebyshev 
polynomials are needed to acquire a satisfactory result. Results obtained using the scheme presented 
here show that the numerical method is very effective and convenient for solving fractional partial 
differential equations with variable coefficients. 

Introduction 
In recent years, fractional derivative and fractional differential equations have found their 

applications in different disciplines. A lot of practical problems can be elegantly modeled with the help 
of the fractional derivative. For example, nonlinear oscillation of earthquake may be modeled with 
fractional derivatives [1], many other recent developments in the description of anomalous transport by 
fractional dynamics [2]. Due to the increasing applications, a lot of attention has been paid to numerical 
and exact solution of fractional differential equations and fractional partial equations. The analytical 
solutions of fractional differential equations are still in a preliminary stage. However, it is difficult to 
obtain their exact solutions. Both mathematicians and physicists have engaged in discussing the 
numerical methods for solving fractional differential equations. The most commonly used ones are 
Adomian decomposition method (ADM) [3,4], Variational iteration method (VIM) [5], Generalized 
differential transform method (GDTM) [6-8], Finite Difference Method (FDM) [9] and Wavelet 
method [10,11] and so on. 
In this paper, our study focuses on a class of fractional partial differential equation as following: 
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where ( ), /u x t xα α∂ ∂ and ( ), /u x t tβ β∂ ∂ are fractional derivative of Caputo sense, 0 , 1α β< ≤ , 

( ),f x t , ( )a x and ( )b x are the known and ( ),u x t is unknown. 
There have been several methods for solving the fractional partial differential equation. Odibat used 

successfully generalized differential transform method to solve the numerical solution of linear partial 
differential equations of fractional order [12].Yi et.al. [13] applied block pulse functions method to 
obtain the fractional partial equations. Podlubny solved the fractional partial differential equations with 
constant coefficients by using Laplace Transform method . 

The structure of this paper is as follows: In Section 2, basic fractional derivatives and integrals 
definitions are reviewed. The basic definitions of Chebyshev polynomials function approximation is 
given in Section 3. In Section 4, the fractional operational matrix of Chebyshev polynomials are derived. 
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We also apply the operational matrix to solve the fractional partial differential equations in Section 4. 
Numerical examples are provided to clarify the approach in Section 5. We end the paper with 
concluding remarks.  

Definitions of fractional derivatives and integrals 

Riemann-Liouville fractional integral of order ( ), 0α α ≥ [14] 
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The properties of the Riemann-Liouville fractional integral can be given by: 
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Riemann-Liouville fractional derivative of order ( ), 0α α ≥ [14] 
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Caputo’s fractional derivative of order ( ), 0α α ≥ [ 14] 
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Specially, for the Caputo derivative, we have ( c is a constant) 
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The relationship between the Riemann-Liouville operator and Caputo operator is expressed as the 
following. 
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Chebyshev polynomials and some of their properties 
The well known Chebyshev polynomials are defined on the interval [ 1,1]− and can be determined 

with the recurrence formula [15] 
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1 1 0 1( ) 2 ( ) ( ), ( ) 1, ( ) , 1,2,n n nT x xT x T x T x T x x n+ −= − = = = K , 
The analytic form of the Chebyshev polynomials ( )nT x of degree n is given by 
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where [ ]/ 2n denotes the integer part of / 2n . The orthogonality condition is 
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In order to use these polynomials on the interval [0,1] , we define the shifted Chebyshev polynomials 
by introduce the change of variable 2 1x t= − . Therefore, the shifted Chebyshev polynomials are 
defined as *( ) (2 1)n nT t T t= − . The analytic form of the shifted Chebyshev polynomials *( )nT t of degree 
n is given by 

2
*

0

2 ( 1)!( ) ( 1) , 1, 2,
(2 )!( )!

kn
n k k

n
k

n kT t n t n
k n k

−

=

+ −
= − =

−∑ K                                                                              (1

2) 
Let  

( ) ( ) ( ) ( ) T* * *
0 1, , , nt T t T t T t =  LΦ                                                                                                      (1

3) 
The Chebyshev polynomials given by Eq.(11) can be expressed in the matrix form 
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A function 2( ) (0,1)u t L∈  can be expressed in terms of the Chebyshev basis. In practice, only the first 
( 1)n + term of Chebyshev polynomials are considered. Hence 
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where T

0 1[ , , , ]nc c c= Lc , ( 0,1,2, , )ic i n= L are called Chebyshev coefficients, and  
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For the function ( ) [ ] [ ]( )2, 0,1 0,1u x t L∈ × , we can also obtain its approximation by using Chebyshev 
polynomials 
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Theorem 1. [15]The error in approximating ( )u t by the sum of its first n terms is bounded by the sum 
of the absolute values of all the neglected coefficients. If 
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for all ( )u t , all n , and all [ 1,1]t ∈ − . 
Theorem 2. [16] The Caputo fractional derivative of order α for the shifted Chebyshev polynomials 
can be expressed in terms of the shifted Chebyshev polynomials themselves in the following form 
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Proof. A combination of Eq.(18) and (23) leads to  
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and subtracting the truncated series from the infinite series, bounding each term in the difference, 
summing the bounds and hence completes the proof of the theorem. 
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Numerical solution of the fractional partial differential equation with variable coefficients 
Consider the fractional partial differential equation with variable coefficients Eq. (1). If we 

approximate the function ( ),u x t with the Chebyshev Polynomials, it can be written as Eq. (19). Then 
we have  
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Substituting Eq. (24), Eq. (25) into Eq. (1), we have 
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Dispersing Eq. (28) by the points ( ) ( ), 1, 2, , ; 1,2, ,i j x tx t i n j n= =L L , we can obtain U which is 
unknown. 

Numerical examples 

Example 1. Consider the following nonhomogeneous partial differential equation  
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equation is ( ) ( )( )22, 10 1 1u x t x x t= − + .  Table 1-3 show the absolute errors for 1/ 4 , 1 / 2 ,t s t s= =  
3 / 4t s= of different n . 

Table 1.Absolute error for 1 / 4t s= , and different values ofn . 
x  2n =  3n =  4n =  

0.1 0.3246 3.2831e-015 3.3582e-016 
0.2 0.2351 4.2734e-015 5.2745e-015 
0.3 0.4820 4.1237e-015 5.6521e-015 
0.4 0.3274 5.7320e-015 6.2742e-016 
0.5 0.8231 4.7381e-015 7.1640e-016 
0.6 0.9127 7.3722e-015 3.2356e-016 
0.7 1.2188 6.3276e-015 4.2745e-015 
0.8 1.5181 1.2374e-014 3.7224e-015 
0.9 0.8364 3.1744e-015 8.8874e-015 

 
 
 
 
 
 
 
 
 

Table 2.Absolute error for 1 / 2t s= , and different values ofn . 
x  2n =  3n =  4n =  

0.1 0.2821 4.2137e-015 3.4325e-016 
0.2 0.4375 5.8711e-015 6.5332e-016 
0.3 0.1021 4.2210e-015 5.2435e-016 
0.4 0.2387 3.1016e-016 4.9722e-016 
0.5 0.8277 3.4762e-016 5.3478e-015 
0.6 0.9322 5.3265e-015 1.3241e-016 
0.7 1.3846 4.7632e-015 9.2371e-016 
0.8 1.6654 4.2346e-016 8.4812e-015 
0.9 0.9144 2.0437e-016 6.3273e-016 

 
Table 3. Absolute error for 3 / 4t s= , and different values ofn . 
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x  2n =  3n =  4n =  
0.1 0.3126 5.0832e-016 5.3281e-016 
0.2 0.8978 4.1845e-016 2.3258e-015 
0.3 0.2374 2.3448e-016 4.0112e-016 
0.4 0.2951 3.2155e-016 5.1223e-016 
0.5 0.3327 5.5518e-015 6.3274e-015 
0.6 1.3267 6.2440e-016 5.7421e-015 
0.7 0.8723 3.5220e-016 5.2871e-016 
0.8 0.9229 4.2301e-016 4.8810e-016 
0.9 1.1327 5.2310e-015 6.1138e-016 

From Tables1-3, we can see that the absolute errors are very small when 3n ≥ . Also when n is fixed, 
the more points we take, the more accurate numerical solutions we obtain. From Example1, we can 
see that the method in this paper can be effectively used to solve  the numerical solution of fractional 
partial differential equation with variable coefficients. From the above results, the absolute errors 
between the numerical solutions and the exact solution are rather small. What’s more, due to the 
absolute errors in this paper is about 1510− , Chebyshev polynomials method can reach higher degree of 
accuracy by comparing the approximations obtained by block pulse method [13]. 

Summary 
In this article, we use the Chebyshev polynomials method to solve a class of fractional partial 
differential equation with variable coefficients. The Chebyshev polynomials operational matrix of 
fractional differentiation is derived from the property of Chebyshev polynomials. The initial equation is 
translated into the product of some relevant matrixes, which can also be regarded as the system of 
linear equations. The solution obtained using the suggested method is in excellent agreement with the 
already existing ones and shows that this approach can be solved the problem effectively. From the 
resulted numerical solution, we can conclude that the used techniques in this work can be applied to 
many other problems. 
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