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Abstract. Using the method of complex analysis and through constructing appropriate conformal 
mapping, the paper has analyzed the plane elasticity problem of dynamic cracks in finite-width 
single-edged cracked strips, and provided an analytical solution to the crack-tip stress intensity factor. 
In addition, when the propagation velocity approaches zero, the dynamic solution can be restored to a 
static solution. 

Introduction 
In everyday life, materials with cracks are of common existence. In the theoretical field, there have 

already been studies regarding finite-height cracked strips of different materials. Article [1], for 
instance, provides an analytical solution to two semi-infinite collinear crack strips; article [2] provides 
an analytical solution to Type III cracks in piezoelectric ceramic strips; article [3] provides an analytical 
solution to asymmetrical fast propagating cracks in narrow bodies; article [4] provides an analytical 
solution to static cracks and fast propagating cracks in narrow bodies; article [5] provides a conformal 
mapping function and conformal maps the finite-width single-edged crack strip to the upper half plane, 
from which the stress intensity factors (SIFs) K Ⅰ, K Ⅱ of static cracks are obtained. In this paper we 
have extended the static problem of finite-width single-edged crack strips to a dynamic problem, 
through constructing a new conformal mapping function, and have provided the analytical solution to 
crack tip dynamic SIFs. Moreover, when the propagation velocity V → 0, the dynamic solution can be 
restored to a static solution. 

The dynamic crack problem in finite-width single-edge cracked tips 
Let there be a fast propagating single-edge crack in a finite-with strip, under plane stress or plane strain 
state as shown in figure 1. In the fixed coordinate system ( )1, ,x y t , introduce Lame potentials 

( )1, ,x y tφ  and ( )1, ,x y tψ [6], which gives 

 
Fig. 1 Finite-width strip with dynamic crack 
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Then the governing equation of plane elasticity dynamics is 
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in which 2∇  is the two dimensional Laplace operator and 1C  and 2C  represent wave velocities of the 
longitudinal wave and the transverse wave, this gives 
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λ , µ  and ρ  are Lame coefficients and the mass density of the material. 
Let the crack with a speed of constant V  propagate along the 1ox  direction, as shown in figure 1. 

Use the Galileo transformation 

1x x Vt= − , y y=                                                                                                                            (4) 
The wave equation set is 

( )2
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The solution of equation set (5) can be given in the plural as follows 

( ) ( ) ( )1 1 1 1 1,x y F z F zφ = + , ( ) ( ) ( )2 2 2 2 2, ix y F z F zψ  = +                                                             (7) 

Here ( )1 1F z  and ( )2 2F z  are, respectively, analytic functions of complex variables 1 1iz x y= + , 

2 2iz x y= + , ( )1 1F z  and ( )2 2F z  represent its complex conjugate functions. 
Bring in signs 

( ) ( ) ( )1 1
1 1 1

1

d
d

F z
z F z

z
′Φ = = , ( ) ( ) ( )2 2

2 2 2
2

d
d

F z
z F z

z
′Ψ = =                                                                (8) 

Then stress and displacement can be expressed as 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 21 1 1 1x yu u z z z zα α α α+ = − Φ + + Φ + − Ψ − + Ψ                                   (10) 
When crack surface is under uniform internal pressure (Type I problem), we have the following 
boundary conditions 
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in which ( )1f x  is a known arbitrary function, here ( )1f x = - p  = constant. 
Therefore it comes down to the following basic question: 
Suppose the crack moves along the x -axis in constant velocity V , when the corresponding 

boundary condition (11) is satisfied on the crack and the finite-width boundary (Type I problem), solve 
for the analytic function ( )1zΦ  on the  1z  plane and the analytic function ( )2zΨ  on the 2z  plane. 

In order to find the solution for equation (5) under boundary condition (11), we construct the 
following conformal mapping function 
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And fix the analysis branch for the ln1 0= , this transformation simultaneously maps the areas on the 
1z  plane and the 2z  plane, which become the upper-half plane of the ζ  plane, and the crack is mapped 

to become a part of the ξ  axis. 
On the ζ  plane the corresponding problem of boundary values comes down to solving the 

following functional equation set[6]: 
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in which 
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Below we solve for ( )1G ζ  
From the first equation of equation (13) we obtain 
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By calculation we can obtain 
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( )2 0G ζ =                                                                                                                                     (19) 
in which 
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Make simultaneous the equations (18), (19) and (14), we get 
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Below we calculate the important physical quantity -  the dynamic stress intensity factor [6]: 
The crack-tip dynamic asymptotic stress field is 
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Here 
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Bring in the combined stress intensity factor 

K fK≡ Ⅰ igK− Ⅱ                                                                                                                           (26) 
Then equations (22), (23) can be written as 
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Comparing the equation to equation (9), derive 
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From equations (21) and (24) we know that 
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Therefore from equations (12), (18) and (28) we can obtain 
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Similarly, when the crack surface is under uniform shear and shearing strength is τ− , we can obtain 
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When 0V → , equation (31) and (32) are restored, respectively, to static crack stress intensity 

factors K Ⅰ= 2 tan
2

ap w
w

π , K Ⅱ = 2 tan
2

aw
w

π
τ , which is identical to the results obtained in 

article [5]. 

Conclusions 
Regarding the dynamic crack problem in finite-width single-edge cracked strips, the conformal 

mapping equation (12) provided by this article is a transcendental function, using conformal mapping 
to simplify the complicated crack problem in order to obtain a solution, and the calculation method is 
relatively simple. The method in this article is an extension to the Muskhelishvili[7] complex potential 
method, expanding the scope of application and enriching the content of the latter. By constructing 
new conformal mapping functions, this study has analyzed the stress intensity factor of dynamic cracks 
in finite-width single-edged cracked strips, and provided an analytical solution to the crack-tip stress 
intensity factor; furthermore, when the propagation velocity approaches zero, the dynamic solution can 
be restored to a static solution. The research in this article is theoretically significant and practically 
applicable in solving many actual problems of engineering fracture. 
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