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Abstract. To resist different kinds of attacks, Boolean functions used in the cryptosystem should have 
good cryptographic properties. The Plateaued functions, a large class of Boolean functions containing 
Bent functions and Partial-Bent functions, are good choices. Therefore, the study of construction and 
cryptographic properties of Plateaued functions has received wide attention. However, until now, there 
are few primary constructions known to us, in which one does not assume the existence of previously 
defined functions to define new ones. Moreover, most of them have some drawbacks. In this paper, a 
new primary construction of Plateaued functions is given. And we show in particular that most of the 
existing primary constructions of Plateaued functions can be reduced to ours. 

Introduction 
It is well known that nonlinear Boolean functions play a very important role in the design of 
cryptosystem. To resist various attacks, good characteristics, including balance, high algebraic 
degree, high nonlinearity, propagation characteristics, high resiliency order and so on, must be 
considered. The importance of each characteristic depends on the choice of the cryptosystem. 
High nonlinearity and resiliency order are two most important criteria in all situations. 

Bent functions permit to resist linear attacks in the best possible way by achieving optimum 
nonlinearity. Unfortunately, they are not balanced and exist only in even dimensions, which 
inspired scholars to search for new classes of Boolean functions whose elements still have high 
nonlinearity and can be balanced for both odd and even dimensions. The class of Partially-Bent 
functions was put forward by Carlet in [1], which has high nonlinearity, resiliency order and good 
propagation characteristics. However, when they are not Bent, Partially-Bent functions have by 
definition non-zero linear structures, which makes them improper for direct cryptographic use. 
Thanks to the class of Plateaued functions presented by Zheng and Zhang in [2], this drawback can 
be covered. Plateaued functions provide some examples of good trade-off among all the properties 
needed in the design of cryptosystem. For example, Maitra and Sarkar in [3] have shown us that 
the nonlinearity and resiliency order of Boolean functions are strongly bounded. The best 
compromise between the two properties is achieved by Plateaued functions only. As a result, the 
study of Plateaued functions becomes necessary and important. As for the construction of 
Plateaued functions, there only exist three main classes (see [4-6]). The class in [7] is in fact a 
subclass of [4]. Moreover, in the past several years, few primary constructions have been given. As 
for the second construction and other constructions, they are also important to obtain Boolean 
functions approaching or achieving the best trade-off among the cryptographic properties. And 
these constructions can be seen in [8-15]. 

We propose in this paper a new primary construction of Plateaued functions, which can contain 
those three main constructions as subclasses. The organization of this paper is as follows. Some 
basic concepts and notions are presented in Section 2. We give a list of the known constructions of 
Plateaued functions in Section 3, put forward our construction in Section 4 and investigate its 
characteristics in Section 5. In Section 6, we show that the former three main classes can be 
reduced to our construction. Finally, Section 7 concludes the paper. 
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Preliminaries 

We denote the set of all n -variable Boolean functions by nB , the addition in 2F by ⊕  and the 
addition in Z  by + . We denote by ...i∈⊕  and 

...i∈∑ the corresponding multiple sums. The support 

of a Boolean function nf B∈ is defined as 1 2 2 1 2( ) {( , , , ) | ( , , , )n
n nsupp f x x x F f x x x= ∈L L  1}= . The 

weight of a function nf B∈  is ( ) # ( )wt f supp f= . A function nf B∈  is balanced if 1( ) 2nwt f −= . 
Any nf B∈  can be uniquely represented as a polynomial over 2F  in n variables of the form: 
 

1 2 0 1 1 , 1,2, , 1 2( , , , )n i n i i i j n i j i j n nf x x x a a x a x x a x x x≤ ≤ ≤ < ≤= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ LL L L , 
 

where the coefficients 0 , 1,2, ,, , , , {0,1}i i j na a a a ∈LL . This representation is called the algebraic 
normal form (ANF). The algebraic degree, denoted by deg( )f , is the number of variables in the 
highest order term with nonzero coefficient. A Boolean function is affine if there only exist terms 
of degree at most 1 in the ANF and the set of all affine functions is denoted by nA . An affine 
function with 0 0a =  is called a linear function. Any linear function on 2

nF  can be denoted by 

1 1 2 2 n nx x x xλ λ λ λ⋅ = ⊕ ⊕ ⊕L ,where 1 2( , , , )nλ λ λ λ= L , 1 2 2( , , , ) n
nx x x x F= ∈L , and" "⋅ denotes the 

dot (inner) product of two vectors. 
The Walsh transform of nf B∈  is an integer valued function over 2

nF  defined by ( )fW λ =  

2

( )( 1)n
f x x

x F
λ⊕ ⋅

∈
−∑ . 

It satisfies Parseval’s relation: 
2

2 2[ ( )] 2n
n

fF
W

λ
λ

∈
=∑ .                                                             (1)                         

A Boolean function nf B∈  is said to be Plateaued if its Walsh transform only takes the three 
values 0 and λ± , where λ  is some positive integer and must be a power 2r  with / 2r n≥ . We call 
λ  the amplitude[6] of Plateaued functions. 

The study of the Walsh spectrum of quadratic function can be found in [16, 17]. 
Suppose nf B∈  is a quadratic function. The bilinear form associated with f is defined by 
( , ) (0) ( ) ( ) ( )fB x y f f x f y f x y= ⊕ ⊕ ⊕ ⊕ . The kernel of ( , )fB x y  is subspace of 2

nF defined by 

2 2( ) { | , ( , ) 0}n n
frad f x F y F B x y= ∈ ∀ ∈ = . 

Lemma 1[16,17] Suppose nf B∈  is a quadratic function and ( , )fB x y  is the binary form associated 
with it, then the Walsh spectrum of f  depends only on the dimension of the kernel of ( , )fB x y , 
denoted by t, then the weight distribution of the Walsh spectrum of f  is as follow: 

 
( )fW λ  Number of λ  

0  2 2n n t−−  
( )/22 n t+  1 (0) ( 2)/22 ( 1) 2n t f n t− − − −+ −  

( )/22 n t+−  
1 (0) ( 2)/22 ( 1) 2n t f n t− − − −− −  

 
A Boolean function nf B∈ is said to be Plateaued with the order r  if its Walsh 

transform fW only takes the three values 0 and /22n r−± . 
Many properties of Boolean function can be deduced from its Walsh spectra. For ever Boolean 

function nf B∈ , the nonlinearity fN and its Walsh transform fW  satisfy the relation: 
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2

1 12 max | ( ) |
2 n

n
f f

F
N W

λ
λ−

∈
= − .                                                                                                   (2) 

 
Because of the relation (1), fN is upper bounded by 1 /2 12 2n n− −− . This bound is tight for every n 

even. The functions achieving it are called bent. 
A Boolean function nf B∈ is said to be balanced if and only if (0) 0fW = , and to be m-resilient if 

and only if its Walsh transform satisfies ( ) 0fW λ = , for all 2
nFλ ∈ such that 0 ( )wt mλ≤ ≤ . 

Known Constructions of Plateaued Functions 
In this section, we review some known primary constructions of Plateaued functions. 

3.1 Marorana-McFarland’s Functions 
Camion and Carlet generalized in [4] the class of Marorana-McFarland’s Functions. We shall 

call MM the generalized class defined as follows: 
Definition 1[4] For any positive integers r and s such that n=r+s, a MM function f  is defined by 
 

, ( , ) ( ) ( )gf x y x y g yφ φ= ⋅ ⊕                                                                                                              (3) 
 
where φ  is any function from 2

sF  into 2
rF  and g  is any Boolean function on 2

sF . 
Let ,gfφ  be a function in MM. For any pair 2 2( , ) r sa b F F∈ × , the value at ( , )a b of the Walsh 

transform 
,gfW

φ
 of ,gfφ  equals 1

( )
( )

2 ( 1)r b y g y
y aφ−

⋅ ⊕
∈

−∑ . Two sufficient conditions are given in the 

following proposition on which ,gfφ  in MM is Plateaued. 

Proposition 1[4] Let ,gfφ  be a function defined on 2 2
r sF F×  and belonging to MM. If φ  is injective 

(resp. takes exactly 2 times each value of Im( φ )), then ,gfφ  is Plateaued of amplitude 

2r (resp. 12r+ ). 
A drawback of MM functions is that their restrictions obtained by keeping y  constant in their 

input are affine, that is, these functions are in fact the concatenations of affine functions. 
3.2 Generalized Marorana-McFarland’s Functions 
A construction generalizing construction MM and avoiding the drawback that these functions 

are the concatenations of affine functions was proposed in [5]. We denote it by GMM. The 
functions it produces are in fact the concatenation of quadratic functions instead of affine 
functions. 
Definition 2[5] Let n  and r  be positive integers such that r n< . Denote the integer part / 2r    

by t and n r−  by s. Let ψ  be a mapping from 2
sF  to 2

tF  and let 1, tψ ψL  be its coordinate 
functions. Let φ  be a mapping from 2

sF  to 2
rF  and let 1, rφ φL  be its coordinate functions. Let g  

be a Boolean function on 2
sF . The function , ,gfψ φ  is defined on 2 2 2

n r sF F F= ×  as 
 

, , 1 2 1 2( , ) ( ) ( ) ( )t
g i i i if x y x x y x y g yψ φ ψ φ= −= ⊕ ⊕ ⋅ ⊕ , 2

rx F∈ , 2
sy F∈ .                                              (4) 

 
MM’s functions correspond to the case where ψ  is the null mapping. 

Lemma 2[5] Let , ,gfψ φ  be defined as in Definition 2. Then for every 2
ra F∈  and every 2

sb F∈ , we 

have 1 2 1 2 1 2 2

, ,

( ( ) )( ( ) ) ( )( ( ))( , ) 2 ( 1)
t
i i i i i

g a

y a y a g y b yr wt y
f y E

W a b
ψ φ

φ φψ = − −⊕ ⊕ ⊕ ⊕ ⊕ ⋅−
∈

= −∑ , where aE  is the superset of 
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1( )aφ −  equal if r is even to 2 2 1 2 1 2 1 2 1 2 1{ | , ( ) ( ) , ( ) }s
a i i i i i iE y F i t y a y a y aψ φ φ− − − − −= ∈ ∀ ≤ = ⇒ = =  and if 

r is odd to 2 2 1 2 1 2 1 2 1 2 1{ | , ( ) ( ) , ( ) , ( ) }s
a i i i i i i r rE y F i t y a y a y a y aψ φ φ φ− − − − −= ∈ ∀ ≤ = ⇒ = = = . 

Proposition 3[5] Let , ,gfψ φ  be defined as in Definition 2. If ψ  has constant weight and if aE  has 
size 0 or 1 for every a  (resp. 0 or 2 for every a ), then , ,gfψ φ  is Plateaued. 

3.3 Q’s Functions 
Functions in the class GMM are built as the concatenations of quadratic functions chosen in 

such a way that we can efficiently compute their Walsh spectra. Carlet and Prouff present another 
way of concatenating quadratic functions in [6].We denote the class by Q. 
Definition 3[6] For any positive integers r and s such that n=r+s, an Q function f  is defined by 
 

1 2 3, , , 1 2 3( , ) ( ( ))( ( )) ( ) ( )gf x y x y x y x y g yφ φ φ φ φ φ= ⋅ ⋅ ⊕ ⋅ ⊕ , 2
rx F∈ , 2

sy F∈ ,                                      (5) 
 
where 1 2,φ φ  and 3φ  are three functions from 2

sF  into 2
rF  and g  is a Boolean function on 2

sF . 
Proposition 4[6] Let 

1 2 3, , , ( , )gf x yφ φ φ  be a function in Q such that 2 ( ) 0yφ ≠  for every 2
sy F∈ . Let E 

be the set of all 2
sy F∈  such that the vectors 1( )yφ  and 2 ( )yφ  are linearly independent. Then, for 

every 2
ra F∈  and every 2

sb F∈ , we have 

, , ,1 2 3

3 1 2 3 1 2

1 ( ) 1 ( )

; ;
( ) {0, ( ), ( )} ( ) ( ) ( )

( , ) 2 ( 1) 2 ( 1)
g

r g y b y r g y b y
f

y E y E
y a y y y a y y

W a b
φ φ φ

φ φ φ φ φ φ

− ⊕ ⋅ − ⊕ ⋅

∈ ∈
+ ∈ + = +

= − − −∑ ∑  

2
3 1

( )

\ ;
( ) ( )

2 ( 1)
s

r g y b y

y F E
y a yφ φ

⊕ ⋅

∈
+ =

+ −∑  

Proposition 5[6] Let 
1 2 3, , , ( , )gf x yφ φ φ  be defined as in Definition 3. Assume that, for every 2

sy F∈ , 
the vectors 1( )yφ  and 2 ( )yφ  are linearly independent. If the 2-demensional flats 

3 1 2( ) ( ), ( )y y yφ φ φ+ < >  (where y  ranges over 2
sF ) are pairwise disjoint , then 

1 2 3, , , ( , )gf x yφ φ φ  is 

Plateaued of amplitude 12r− . 
Proposition 6[6] Let 

1 2 3, , , ( , )gf x yφ φ φ  be defined as in Definition 3. Assume that 2 ( ) 0yφ ≠  for every 

2
sy F∈ . For every 2

ra F∈ , let aF ′  be the set of all 2
sy F∈  such that the vectors 1( )yφ  and 2 ( )yφ  

are linearly independent and such that a  belongs to the flat 3 1 2( ) ( ), ( )y y yφ φ φ+ < > . Let aF ′′  be the 
set of all 2

sy F∈  such that the vectors 1( )yφ  and 2 ( )yφ  are linearly dependent and 

1 3( ) ( )a y yφ φ= + . If, for every 2
ra F∈ , the number # 2# 0  2a aF F or′ ′′+ = , then 

1 2 3, , , ( , )gf x yφ φ φ  is 

Plateaued of amplitude 2r . 

A New Construction of Boolean Functions Leading to Plateaued Functions 
Functions in class MM are built as the concatenations of affine functions, while functions in class 
GMM and Q are built as the concatenations of quadratic functions. The Walsh spectra of these 
three classes of functions can be efficiently computed. The aim of this section is to present another 
way of concatenating quadratic functions, whose Walsh spectra can also be efficiently computed.  

Firstly, let ( ) , ( ) ,ij nn ij nna b L  stand for a matrix of order n . 
Note: Let the set {( ) |  1 , 0}ij nn jia i j n a∀ ≤ < ≤ =  denoted by nU . Suppose that nf B∈  is a 
quadratic function with 0 0a = , then the ANF of f  is 1 2 1 1 ,( , , , )n i n i i i j n i j i jf x x x a x a x x≤ ≤ ≤ < ≤= ⊕ + ⊕L . 
And we find that f can be also written in the form: 
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( ) ( ) T
ij nnf x x a x=                                                                                                                   (6) 

where 1 2 2( , , , ) n
nx x x x F= ∈L , ( )ij nn na U∈  and ii ia a= , ,ij i ja a= . 

We concatenate now the functions in this Note: 
Definition 4 For any positive integers r  and s  such that n r s= + , we call TF the class of all 
Boolean functions f  in the form:  
 

, ( , ) ( ) ( )T
gf x y x y x g yζ ζ= ⊕ , 2

rx F∈ , 2
sy F∈ ,                                                                        (7) 

 
where ζ  is a mapping from 2

sF  to rU  and g  is any Boolean function on 2
sF . 

In order to compute the Walsh spectra of the TF functions, we investigate the dimension of the 
kernel of binary form associate with the functions in (6) at first. 

Suppose that nf B∈  is a quadratic function with 0 0a =  and ( ) ( ) T
ij nnf x x a x= , then the bilinear 

form associated with f can be written as ( , ) (0) ( ) ( ) ( )fB x y f f x f y f x y= ⊕ ⊕ ⊕ ⊕  

0 ( ) ( ) ( )( ) ( ) ( )T T T T
ij nn ij nn ij nn ij nnx a x y a y x y a x y x b y= ⊕ ⊕ ⊕ ⊕ ⊕  . 

Next, we describe more details of implication for the matrix ( )ij nnb . 
Let δ  be a mapping from nU  to the set {( ) |  1 , 0 ;  1 , }ij nn ii ij jic i n c i j n c c∀ ≤ ≤ = ∀ ≤ < ≤ =   such 

that for every ( )ij nn na U∈ , (( ) ) ( )ij nn ij nna cδ = , where ,1ij ji ijc c a i j n= = ≤ < ≤ . 
Without loss of generality, we assume that there exists the monomial 1x  and 1 2x x  in the ANF of 

f , then the elements 1 1 1 10 ( ) 0x y x y⊕ ⊕ ⊕ ⊕ =  and 1 2 1 2 1 1 2 2 1 20 ( )( )x x y y x y x y x y⊕ ⊕ ⊕ ⊕ ⊕ =  

2 1x y⊕  exist in the ANF of ( , )fB x y . Therefore, we obtain the relation between δ  and ( )ij nnb  such 
that ( ) (( ) )ij nn ij nnb aδ= . 

Let ( ( ))D rad f  be the dimension of the kernel of ( , )fB x y . Then 2 2( ) { | ,n nrad f x F y F= ∈ ∀ ∈  

2 2 2( , ) 0} { | , ( ) 0} { | ( ) 0}n n T n
f ij nn ij nnB x y x F y F x b y x F x b= = ∈ ∀ ∈ = = ∈ = , thus, we can conclude that 
( ( )) (( ) ) ( (( ) ))ij nn ij nnD rad f n R b n R aδ= − = − , where (( ) )ij nnR b  is the rank of ( )ij nnb . 
According to Lemma 1, we put forward the computation of the Walsh spectra of the TF 

functions as follow. 
Theorem 1 Let ,gfζ  be defined as in Definition 4. Denote ( ) Tx y xζ  by ( )yF x  and ( ( ))yD rad F  by 

yt .Denote the set 2{ | ( ) 0}
y

r
FF Wω ω∈ =  by 0

yFW , the set 2{ rFω ∈  ( )/2| ( ) 2 }y

y

n t
FW ω +=  by 

yFW +  and the 

set ( )/2
2{ | ( ) 2 }y

y

n tr
FF Wω ω +∈ = −  by 

yFW − . Then for every 2
ra F∈  and every 2

sb F∈ , we have  
 

,g 2 2

2 2

2

( ) ( )
( , )

( ) ( )

( )/2 ( )
,

(2 ( ( )))/2 ( )
,

( , ) ( 1)

               ( 1) ( 1)

               ( )2 ( 1)

               ( )2 ( 1)

T

r s

T

s r

y
s

x y x g y ax by
f x y F F

g y by x y x ax
y F x F

r t g y by
ay F

r R y g y by
ay

W a b

y

y

ζ

ζ

ζ

ζ

δζ
ζ

ξ

ξ

⊕ ⊕ ⊕
∈ ×

⊕ ⊕
∈ ∈

+ ⊕
∈

− ⊕

= −

= − −

= −

= −

∑
∑ ∑
∑

2
sF∈∑

, 

where ,a ζξ  is a mapping from 2
sF  to {0,1, 1}−  such that for every 2

sy F∈ , 
0

,

0,

( ) 1,

1,

y

y

y

F

a F

F

a W

y a W

a W
ζξ +

−

 ∈
= ∈


− ∈

. 
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Theorem 2 Let ,gfζ  be defined as in Definition 4. We denote ( ( ))R yδζ  by 0t  and assume that 0t  

is constant for every 2
sy F∈ . For every 2

ra F∈ , let aF  be the set of all 2
sy F∈  such that 

, ( ) 0a yζξ ≠ . If, for every 2
ra F∈ , # 0  1aF or=  (resp. 0 or 2), then ,gfζ  is Plateaued of amplitude 

0 /22r t−  (resp. 01 /22r t+ − ). 
Proof. According to the hypothesis and proposition 9, if # 0 or 1aF = (resp. 0 or 2), then 

,g
( , )fW a b

ζ
 equals 0 or 0(2 )/22 r t−±  (resp. 0 or 0(2 2)/22 r t− +± ).                                                             ■ 

Remark: Because of that for every ( )ij rr ra U∈ , the diagonal elements of the matrix (( ) )ij rraδ  are 

all equal to 0, there exist at least 2r  matrixes of rU  such that the rank of their images after 
mapping δ  are all the same. Thus, the condition that ( ( ))R yδζ  is constant for every 2

sy F∈  is 
easy to satisfy. 

We call the class of those Plateaued functions 1TF  (resp. 2TF ) in TF  constructed in the way of 
making # 0  1aF or=  (resp. 0 or 2) for every 2

ra F∈ . 

Study of the Class 1TF  and 2TF  

According to Equality (3) and Theorem 2, the nonlinearity of any Boolean function in class 1TF  
(resp. 2TF ) is 0(2 )/2 112 2 r tn − −− −  (resp. 0(2 )/212 2 r tn −− − ). 

The following two propositions investigate the resiliency order of 1TF  and 2TF . 
Proposition 9 Let ,gfζ  be defined as in Definition 4. Let D be the set of all 2

ra F∈  such that 

, ( ) 0a yζξ ≠  for some 2
sy F∈ . Let k be the minimum weight of the elements of D. If, for every 

2
ra F∈ , # 0  1aF or= , the resiliency order m of ,gfζ  equals 1k −  and k is upper bounded by 

0
max{ : 2 # } 1t r

i

r
t N D

i=

 
∈ ≤ − + 

 
∑ . 

Proof. According to the hypothesis and Theorem 1 and 2, 
,g
( , )fW a b

ζ
 equals 0(2 )/22 r t−±  if and 

only if a D∈ . If ( , )a b  has weight smaller than or equal to 1k − , then a  has weight smaller than or 
equal to 1k −  and does not belong to D, which implies that 

,g
( , ) 0fW a b

ζ
= . Therefore, ,gfζ  has 

resiliency order at least 1k − . Moreover, suppose that ,gfζ  has resiliency order larger than or 

equal to k, then 
,g
( , ) 0fW a b

ζ
=  for any 2

ra F∈  having weight k, which contradicts the hypothesis 

on k and D. Thus, the resiliency order of ,gfζ  equals 1k − . 

Since, by hypothesis, every vector of weight smaller than or equal to 1k −  belong to cD , we 

deduce that 1

0
2 #k r

i

r
D

i
−

=

 
≤ − 

 
∑  and then max{ :k t N≤ ∈  

0
2 # } 1t r

i

r
D

i=

 
≤ − + 

 
∑ .                     ■ 

Proposition 10 Let ,gfζ  be defined as in Definition 4, D and k be defined as in Proposition 9. If, 

for every 2
ra F∈ , # 0  2aF or= , the resiliency order m of ,gfζ  equals 1k −  or k and k is upper 

bounded by 
0

max{ : 2 # } 1t r
i

r
t N D

i=

 
∈ ≤ − + 

 
∑ . 

Proof. According to the hypothesis and Theorem 1 and 2, 
,g
( , )fW a b

ζ
 equals 0(2 2)/22 r t− +±  if and 

only if a D∈ . If ( , )a b  has weight smaller than or equal to 1k − , then a  has weight smaller than or 
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equal to 1k −  and does not belong to D, which implies that 
,g
( , ) 0fW a b

ζ
= . Therefore, ,gfζ  has 

resiliency order at least 1k − . 
   Suppose that a  is an element of D with Hamming weight being k and let 1y and 2y  be two 

elements of 2
sF  such that , 1( ) 0a yζξ ≠  and , 2( ) 0a yζξ ≠ . According to Proposition 9, for every 

2
sb F∈ , the restriction of 

,gfW
ζ

 to 2{ } sa F×  can be written as following: 

1 1 2 2

,0

( ) ( )
1 2 1 2(2 )/2

1 ( , ) [( 1) ( 1) ] 2[ ( ) ( ) ( )]
2 g

g y by g y by
fr t W a b b y y g y g y
ζ

⊕ ⊕
− = ± − − − = ± ⋅ + ⊕ ⊕  or 

1 1 2 2

,0

( ) ( )
1 2 1 2(2 )/2

1 ( , ) [( 1) ( 1) ] 2[ ( ) ( ) ( ) 1]
2 g

g y by g y by
fr t W a b b y y g y g y
ζ

⊕ ⊕
− = ± − + − = ± ⋅ + ⊕ ⊕ + . 

When the vectors 1y and 2y  are distinct, the linear function 1 2( )b b y y→ ⋅ +  is not constant on 
the set 2{ | ( ) 1}sb F wt b∈ ≤ , and then there always exists an element 2

sb F∈  with Hamming weight 
( ) 1wt b ≤  such that 

,
( , ) 0

gfW a b
ζ

≠ . And this implies that the resiliency order of ,gfζ  is strictly 

upper bounded by 1k + . Thus, we conclude that the resiliency order of ,gfζ  equals 1k −  or k . 
The proof of the k’s bound is the same as Proposition 11.                                                        ■ 

Relation among these four Constructions 
In this section, we shall deduce that those three classes of functions, namely MM, GMM and Q, can 
be reduced to TF functions. 

6.1 MM’s reduction 
Denote the set {( ) | ( )  ;  1 , 0}ij rr ij rr r ija a U i j r a∈ ∀ ≤ < ≤ =  by MM

rU . Obviously, the set MM
rU  is a 

subset of rU . Let MMζ  be a mapping from 2
sF  to MM

rU , then the function 

, ( , ) ( ) ( )
MM

T
g MMf x y x y x g yζ ζ= ⊕  is actually the function , ( , ) ( ) ( )gf x y x y g yφ φ= ⋅ ⊕  in definition 1. 

And for every 2
sy F∈ , ( ( )) (0)MM rryδ ζ = , hence, ( ( ( ))) 0MMR yδ ζ = . Then for every 2

ra F∈  and 

every 2
sb F∈ , we have

,g 2 2

( ) ( )

( , )
( , ) ( 1)

T
MM

r s
MM

x y x g y ax by
f x y F F

W a b
ζ

ζ ⊕ ⊕ ⊕

∈ ×
= −∑

2
, ( )s ay F

yζξ
∈

= ∑  
(2 ( ( )))/2 ( )2 ( 1)MMr R y g y byδζ− ⊕−

2

( )
,2 ( )( 1)s

MM

r g y by
ay F

yζξ ⊕
∈

= −∑ . 

If φ  is injective (resp. takes exactly 2 times each value of Im(φ )), then for every 2
ra F∈ , there 

exists at most one (resp. 0 or 2) 2
sy F∈  such that 

2

( )( 1) 0r
x y a x

x F
φ ⊕ ⋅

∈
− ≠∑ , while this condition can 

be deduced to that for every 2
ra F∈ , there exists at most one (resp. 0 or 2) 2

sy F∈  such that 

, ( ) 0
MMa yζξ ≠ , that is # 0 or 1aF =  (resp. # 0 or 2aF = ). 

Hence, the MM functions can be reduced to TF functions. 
6.2 GMM’s reduction 
Let GMM

rU  be the set of ( )ij rr ra U∈  such that for every 1 ,1i t j r≤ ≤ ≤ ≤ , 2 1,2 ,i i jja a− = 0  1or  and 

the rest positions are all 0. Let GMMζ  be a mapping from 2
sF  to GMM

rU , then the function 

, ( , ) ( ) ( )
GMM

T
g GMMf x y x y x g yζ ζ= ⊕  is actually the function , , 1 2 1 2( , ) ( ) ( )t

g i i i if x y x x y x yψ φ ψ φ= −= ⊕ ⊕ ⋅  
( )g y⊕  in definition 2. 

Theorem 3 Let , ,gfψ φ  be defined as in Definition 2. If ψ  has constant weight, we denote it by 0r , 

then for every 2
sy F∈ , 0( ( ( ))) 2GMMR y rδ ζ = . 

Proof. Due to that the binary form of affine functions is equal to 0, we consider ψ  only. If ψ  
has constant weight, that is, for every 2

sy F∈ , the number of 1 in the vector 1( ( ), ( ))ty yψ ψL  is 
constant and equal to 0r , and this condition is equivalent to that the number of 1 in the set 
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12 34 (2 1)(2 ){ , , , }t ta a a −L  is 0r . Assume that r  is an even integer, then / 2t r= . We get the following 
matrix: 

12

21

34

43

( 1)( )

( )( 1)

0
0

0
0

0
0

r r

r r

a
a

a
A a

a
a

−

−

 
 
 
 
 
 ′ =
 
 
 
 
 
 

O

, 

where 12 21 ( 1)( ) ( )( 1), , r r r ra a a a− −= =L . We can find that 2( ( ( )))s
GMMA R Fδ ζ′∈ . Obviously, if the 

number of 1 in the set 12 34 ( 1)( ){ , , , }r ra a a −L  is 0r , the order of this matrix A′  is 02r .  
In a similar way, we can proof this theorem is still hold in the case that r  is an odd integer. 

Therefore, we conclude that if 0( )wt rψ = , then for every 2
sy F∈ , 0( ( ( ))) 2GMMR y rδ ζ = .             ■ 

Theorem 3 tells us that for every 2
ra F∈  and every 2

sb F∈ , if 0( )wt rψ = , we have 
0

, 2

( )
,( , ) 2 ( )( 1)sg GMMGMM

r r g y by
f ay F

W a b y
ζ ζξ− ⊕

∈
= −∑ . 

If for every 2
ra F∈ , # 0  1aE or=  (resp. 0 or 2), then there exists at most one (resp. 0 or 2) 

2
sy F∈  such that 1 2 1 2

2

( ) ( )( 1) 0
t
i i i i

r
x x y x y a x

x F
ψ φ= −⊕ ⊕ ⋅ ⊕ ⋅

∈
− ≠∑ , and this condition can be deduced to that for 

every 2
ra F∈ , there exists at most one (resp. 0 or 2) 2

sy F∈  such that , ( ) 0
GMMa yζξ ≠ , that is 

# 0 or 1aF =  (resp. # 0 or 2aF = ). 
Hence, the GMM functions can be reduced to TF functions. 
6.3 Q’s reduction 
Let Q

rU  be the set of all ( )ij rr ra U∈  such that 1 2 3( ( ))( ( )) ( )x y x y x yφ φ φ⋅ ⋅ ⊕ ⋅  can be written in the 

form ( ) T
ij rrx a x  when y  run through 2

sF . Let Qζ  be a mapping from 2
sF  to Q

rU , then the function 

, ( , ) ( ) ( )
Q

T
g Qf x y x y x g yζ ζ= ⊕  is actually the function

1 2 3, , , ( , )gf x yφ φ φ = 1 2( ( ))( ( ))x y x yφ φ⋅ ⋅  

3( ) ( )x y g yφ⊕ ⋅ ⊕  in definition 3. 
Theorem 4 Let 

1 2 3, , , ( , )gf x yφ φ φ  be defined as in Definition 3. Assume that for every 2
sy F∈ , the 

vectors 1( )yφ  and 2 ( )yφ  are linearly independent, that is 2
sE F= , then for every 2

sy F∈ , 
( ( ( ))) 2QR yδ ζ = . 
Proof. Due to that the binary form of affine functions is equal to 0, we consider 1φ  and 2φ  only. 

Because of that 2
sE F= , for every 2

sy F∈ , the vector 1( ) 0yφ ≠ , 2 ( ) 0yφ ≠  and 1 2( ) ( )y yφ φ≠ . 
For any given 2

sy F∈ , let the vector 1( )yφ  be 1 2( , , , )ru u uL , the vector 2 ( )yφ  be 1 2( , , , )rv v vL , 
without loss of generality, we assume that 1

l ki ju v= = , where 1 l k r≤ ≤ ≤ , and 0 elsewhere, then 

1 1 1 11 2( ( ))( ( )) ( )( ) ( )
l l k k

T
i i i i j j j j ij rrx y x y u x u x v x v x x b xφ φ⋅ ⋅ = ⊕ ⊕ ⊕ ⊕L L  , where ( )ij rr rb U∈ . 

Denote the set 1{ , , }li iL  by I , the set 1{ , , }kj jL  by J  and the set {1, 2, , }rL  by R , then the 
set { : }ix i R∈  can be divided into four classes as follow: 

(1){ | \ ( )}ix i R I J∈ ∪  
(2){ | \ ( )}ix i I I J∈ ∩  
(3){ | \ ( )}ix i J I J∈ ∩  
(4){ | }ix i I J∈ ∩  
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Due to that for every 2
sy F∈ , the vector 1( ) 0yφ ≠ , 2 ( ) 0yφ ≠  and 1 2( ) ( )y yφ φ≠ , we get that if 

the set { | }ix i I J∈ ∩ ≠ ∅ , then there exists at most one ∅  of the two sets { | \ ( )}ix i I I J∈ ∩  
and { | \ ( )}ix i J I J∈ ∩ . If the set { | }ix i I J∈ ∩ = ∅ , then both the sets { | \ ( )}ix i I I J∈ ∩  and 
{ | \ ( )}ix i J I J∈ ∩  are not ∅ . The set { | \ ( )}ix i R I J∈ ∪  is possibly equal to ∅ . For every 

(1)i ∈ \ ( )R I J∪ , (1)i th row of the matrix (( ) )ij rrbδ  will be all 0. For every (2) \ ( )i I I J∈ ∩ , (2)i th 

row of the matrix (( ) )ij rrbδ  will be 1 2( , , , )rv v vL . For every (3) \ ( )i J I J∈ ∩ , (3)i th row of the 

matrix (( ) )ij rrbδ  will be 1 2( , , , )ru u uL . For every (4)i I J∈ ∩ , (4)i th row of the matrix (( ) )ij rrbδ  
will be 1 1 2 2( , , , )r ru v u v u v+ + +L . 

In summary, we conclude that for every 2
sy F∈ , ( ( ( ))) 2QR yδ ζ = .                                          ■ 

Assume that 2
sE F= . Then for every 2

ra F∈  and every 2
sb F∈ , we have 

, , ,1 2 3
( , )

gfW a b
φ φ φ

=  

3 1 2 3 1 2

1 ( ) 1 ( )

; ;
( ) {0, ( ), ( )} ( ) ( ) ( )

2 ( 1) 2 ( 1)r g y b y r g y b y

y E y E
y a y y y a y yφ φ φ φ φ φ

− ⊕ ⋅ − ⊕ ⋅

∈ ∈
+ ∈ + = +

− − −∑ ∑  and 
, 2

1
,( , ) 2 ( )sg QQ

r
f ay F

W a b y
ζ ζξ−

∈
= ∑  

( )( 1)g y by⊕− . 
If the 2-demensional flats 3 1 2( ) ( ), ( )y y yφ φ φ+ < >  are pairwise disjoint for every 2

sy F∈ , that is, 
for 2

sy F∈ , the vectors 3 1 3 2 3( ), ( ) ( ), ( ) ( )y y y y yφ φ φ φ φ+ +  and 1 2 3( ) ( ) ( )y y yφ φ φ+ +  are pairwise 
unequal, then it can be deduced that for every 2

ra F∈ , there exists at most one 2
sy F∈  such that 

, ( ) 0
Qa yζξ ≠ , that is # 0 or 1aF = . 

Let the set aF ′  and aF ′′  be defined in proposition 6. If # 2#a aF F′ ′′+ =  0  2or , then 

(# 0  # 0  2)a aF and F or′′ ′= =  or (# 0  1 aF or and′′ =  # 0)aF ′ = , and the first case can be deduced 
to that for every 2

sy F∈ , ( ( ( ))) 2QR yδ ζ =  and for every 2
ra F∈ , there exists zero or two 2

sy F∈  
such that , ( ) 0

Qa yζξ ≠ , that is # 0 or 2aF = , while the second case can be deduced to that for every 

2
sy F∈ , ( ( ( ))) 0QR yδ ζ =  and for every 2

ra F∈ , there exists at most one 2
sy F∈  such that 

, ( ) 0
Qa yζξ ≠ , that is # 0 or 1aF = . 

So much for that, we complete the reduction of these three constructions. 
Remark:(1) Class TF has a simpler definition than these three classes recalled at subsection 3.1, 
3.2 and 3.3. And the Walsh spectrum of TF functions is also simpler to compute. Notice that its 
size 

2 2( )/2 2 2 [( )/2 1]2(2 ) 2 2
s s sr r r r+ + +× =  is not smaller than 2 2(2 ) (2 )

s st r× 2 ( 1)22 2
s st r+ +× =  (where 

/ 2t r=    ) of GMM and lager than 2 3 2 (3r 1)2[(2 ) ] 2 2
s s sr +× =  of Q when 6r ≥ . 

(2) The rank of the matrix ( )ij nnb  of these three classes, that is MM, GMM and Q, is equal to 0 
or an even integer. However, the class TF’s can be any integer smaller than or equal to r , therefore, 
our construction can generate different functions that these three constructions can’t. 

Conclusions 
In this paper, we propose a new primary construction namely TF, which has been proved that it 

is a large class containing the class MM, GMM and Q. However, how to construct Plateaued 
functions with good properties more efficiently will be still an open problem, and we will 
concentrate our effort on this problem unceasingly. 
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