

Cost Analysis of B+-Tree and CSB+-Tree in Main Memory Database
Lan Wang1, a, Fengdong Sun1, b

1 Department Of Computer Science and Technology , DaLian Neusoft University of Information

Dalian,116023,China
aemail: wanglan@neusoft.edu.cn, bemail:sunfengdong@neusoft.edu.cn

Keywords: Main Memory Databases ; B+-Tree; CSB+-Tree; Cost Analysis;
Abstract. Index is indispensable in database system to speeding up data access. Commonly used
indexes in main memory databases are B+-Tree, T-Tree and their variants. Cost model of main
memory database are more complex than disk-oriental database, and relatively little work has been
done on this area. This paper establishes a cost model for B+-Tree and CSB+-Tree, analyzes their
main performance factors. We perform several experiment evaluations on the cost model.

Introduction
Index is an essential part of relational database to improve data access performance. For main

memory database, the primary goal of index is to reduce overall computation time while using as
little memory as possible [1].

With the development of computer hardware, to minimize the impact of speed gap of CPU and
memory multiple caches are added between them. Correspondingly, cache sensitive index has been
developed, two of which are CSB+-Tree and CST-Tree [2,3]. CSB+Tree is a variant of B+-Tree,
whose node size is set to cache line size and pointer usage is restricted. Compared to T-Tree, nodes
in CST-Tree are organized in group, and nodes of same group are stored contiguously.

Some researchers focus on cost model, which is the foundation of query optimization. In main
memory database all data is kept in memory, so access bottleneck have moved up to RAM and
CPU. Although multi-level caches are introduced to speed up memory access, it makes data cost
model more complex in main memory database. At present, execution time and cache miss are
usually used to evaluate main memory database query [4].

B+-Tree/CSB+-Tree’s Cost Analysis
Suppose B+-Tree and CSB+-Tree indexes are created on relation R. We define the parameter

symbol in Table 1. Subscript i and l represent inner node and leaf node.

TABLE I. PARAMETER SYMBOL OVERVIEW

Symbol Description Symbol Description Symbol Description
ni inner node key number |c| cache line size |k| key size
nl leaf node key number |m| metadata size in node s range query selectivity
|ni| size of inner node |d| rid size in leaf node |p| pointer size
|nl| size of leaf node t total record numbers u fill factor

According to parameters above, key number of inner node and leaf node are:

()
B

i i

i

n m p
n

k p+

− −
=

+
()

CSB

i i

i

n m p
n

k+

− −
=

()l l

l

n m 2 p
n

k | d |

− −
=

+

Tree’s fan-out is:

f * 1
i

u n= +
()i i

B

n m p
f u* 1

k p+

− −
= +

+

()i i

CSB

n m p
f u* 1

k+

− −
= +

Number of leaf node and depth of tree are:

3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015)

© 2015. The authors - Published by Atlantis Press

3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015)

© 2015. The authors - Published by Atlantis Press 914

l

t
L

u*n
=

()
f f

l l

t* k d
h log L 1 log 1

u*(n m 2 p)

+
= + = +

− −

In B+-Tree and CSB+-Tree, point query is processed like this: to compare in inner node to find
the right sub-tree, and then move to the sub-tree until we reach the leaf node. Whether required key
exists or not, the path traversed is no difference. The cost of point query consists of two parts: the
cost of comparing in inner node, and the cost of movement between different tree hierarchies. The
comparisons number in inner node is Log2(u*ni), so the total number of comparisons and branch
miss-prediction is:

h

compare 2 i

i 1

NUM Log (u*n)
=

= ∑
h

Branch_Misp 2 i

i 1

1
NUM * Log (u*n)

4 =

= ∑

Moving between different tree levels invokes cache miss and TLB miss. For cache miss, one
moving invokes one cache miss if node size is smaller than cache line size. The value is if node size
is bigger than cache line size. Because we always need to access the first cache block of the node,
we add cache miss for each access.

(|n| |c|)L1 _ miss
NUM h

<=
=

(|n| |c|)L1 _ miss 2

n c
NUM h*(Log)

c n>
= +

When moving between tree levels, each level invokes one TLB miss.

TLB_missNUM h=

And L2 cache miss can be presented as:
L1_iss L1

L2 _ miss

L2

NUM *SIZE
NUM

SIZE
=

The cost of range query is divided into two parts: the time to locate the first leaf node and the
time to traverse leaf node links. The cost to find the first leaf node is the same as point query. The
leaf node traversal cost is:

compare
NUM t*s=

(|nl| |c|)L1 _ miss

l

t*s
NUM

u*n<=
=

(|nl| |c|)

l

L1 _ miss

l

nt*s
NUM *

u*n c>
=

BTLB_miss

l

t*s
NUM

u*n+
=

CSBTLB_miss

CSB l

t*s
NUM

f *u*n+
+

=

Now let’s consider of insert operation. The cost of insert can be divided into three parts: the time
to find insert position, the time of data movement within the node or node split, and the time of data
insertion. Insert position finding is a point query operation. The cost of data movement within a
node is about:

move

u* | n |
NUM

2
=

As for the node splitting cost, B+-Tree need to move half of the data of a node, while CSB+-Tree
have to move half of the data of a node group.

Bsplit

| n |
NUM

2+
= CSB

CSB
split

f * | n |
NUM

2+

+=

Experiment

We ran our experiments on an intel® Xeon® machine. The hardware detail is shown in TableⅠ.

915

We choose SUSE Linux Enterprise Server 10 SP2 (x86_64)-Kernel 2.6.16.60-0.21 as the operating
system.

TABLE II. EXPERIMENTAL MACHINE DETAIL

Device Description Device Description
CPU Intel® Xeon® CPU L5408@2.13GHz Cycles Per Instruction 0.7
CPU Type Intel Core 2 45nm processor L1 cache cycles 3
CPU Cores 2 sockets * 4 cores/socket L2 cache cycles 40
Cache Line Size 64 Byte TLB miss cycles 40
L1 Cache Size 32K Branch misp cycles 10
L2 Cache Size 6M Memory latency cycles 300

We implemented a B+-Tree and a Full CSB+-Tree. Both of them support bulk load, point query,
range query and insert operation. Experiments conducted are:

(1)To compare the overall performance of two trees on point query, range query and insertion
including execution time, cache misses, branch miss-prediction etc. The difference analyzing is also
need.

(2)To adjust the parameters of Section Parameters Effects to verify B+-Tree and CSB+-Tree
performance impact factors: number of records, key size, pointer size, inner node size, leaf node
size, record orderliness, range size and fill factor.

Unless otherwise stated, the experiment is based on a data of 10,000,000 random keys. We
repeatedly perform our experiment to get an average result. Intel® VTuneTM Amplifier 2013 [20]
is used to acquire performance events in Table II. As our code size is small, performance events
concern instruction miss is not considered.

TABLE III. INTEL VTUNE COUNT EVENTS

VTune Events Description VTune Events Description
CPU_CLK_UNHALTED.
CORE

CPU cycles of the
execution

INST_RETIRED.ANY Total CPU instructions

BR_MISSP_EXEC Branch miss-predictions DTLB_MISSES.ANY DTLB miss
L1D.REPL L1D cache miss L2_LINES_IN.SELF.ANY L2 cache miss
We also record the run time besides above events.
In the experiment, we set node size the same as cache line size (64Byte). Other parameters are

shown in Table II.
Point query: To perform 100,000 times random point queries on 10,000,000 records.
Range query: To perform 10 times range queries on 10,000,000 records. The condition keys are

randomly generated with query selectivity 10%.
Insert:To insert 100,000 records to 10,000,000 records. The insert keys are randomly generated.

TABLE IV. PARAMETERS OF EXPERIMENT

Parameter Name Value Parameter Name Value
Leaf node size 64 Inner node size 64
Key size 4 Rid size 4
Pointer size Fill factor 0.7
Inner node key num of
B+-Tree

7 Inner node key num of
CSB+-Tree

14

Leaf node key num 6
Test result is shown in Figure.1. The main vertical axis shows the number of CPU cycles That

VTune has collected (in Million). The second vertical axis shows the execution time (s).
It can be seen that the main performance affecter is L2 cache miss. For point query, CSB+-Tree

outperforms B+-Tree. That is because CSB+-Tree’s inner node spend less space to store pointers,
which leads to less L2 cache miss. For range query, time is mainly consumed in leaf node traversal,
so the time difference of finding the first key can be neglected. One interest thing is the insert
operation. Despite the CSB+-Tree nodes need to move more data in node splitting. But the insert
performance of B+-Tree is not better than CSB+-Tree. That is because of the 0.7 fill factor, which

916

means that inserting %1 records does not cause too much node splitting. Thus insert performance is
mainly determined by the key search time, where CSB+-Tree outperforms.

Figure 1 Overall performance of B+-Tree and CSB+-Tree Figure 2 Inner node size impact

Conclusions
This paper analyzes the B+-Tree and CSB+-Tree access cost, and established a model to evaluate

their performance. From the cost model, we find several parameters that affect B+-Tree and
CSB+-Tree’s performance. We verified B+-Tree and CSB+-Tree performance while varying
different parameters. The conclusions are:

(1)Performance is significantly higher when node size>= cache line size. When node size is two
times larger than cache line size, both B+-Tree and CSB+-Tree’s performance will slowly decrease.
Inner node size and leaf node size have similar impact on query performance. There is no reason to
have them keep different values.

(2)For range query, B+-Tree and CSB+-Tree’s performance has no big different. Both
performances decrease linearly according with selectivity.

(3)No matter for insert or query, fill factor increasing improves the performance of B+-Tree.
CSB+-Tree has the best insert performance when fill factor is 0.7.

References
[1]Lehman Tobin J et al. A study of index structures for main memory database management
systems[C]. Proceedings of the 12th VLDB Conference, Kyoto, Japan, 1986: 294-303.

[2]Rao Jun, Ross Kenneth A. Making B+-Trees cache conscious in main memory[C]. Proceedings
of the 2000 ACM SIGMOD international Conference on Management of Data, Dallas, Texas, USA,
2000: 475-486.

[3]Lee lg-Hoon, Shim Junho et al. CST-trees: Cache sensitive T-trees[C]. Proceedings of the 12th
International Conference on Database Systems for Advanced Applications, Bangkok, Thailand.
2007: 398-409.

[4]Shan Wang, Yanqin Xiao . Research of main memory database[J]，Computer Application Oct.
2007, vol 27, No. 10 2353-2357, In Chinese.

[5]Lee lg-Hoon, Jae-won Lee. Cache Conscious Trees on Mordern Microprocessors[C],
Proceedings of the 4th International Conference on Ubiquitous Information Management and
Communication, ICUIMC 2010, Suwon, Republic of Korea, January 14-15, 2010.

917

