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Abstract. This paper proposes a novel direct and completely nonlinear alignment method for the 
strapdown inertial navigation system (SINS). The method uses the sparse-grid quadrature Kalman 
filter based on the Kronrod–Patterson rule (SG-KP-QKF) and nonlinear models. The system equations 
and the measurement equations are all nonlinear. One of the advantages of the method is that the 
nonlinear SG-KP-QKF directly output the Euler angles which are simultaneously updated in the 
process of filter time updating. Finally, the method is verified by inertial measurement unit (IMU) 
experimental data. The alignment results show that the proposed method can obtain an accurate initial 
attitude within a short convergence time. These findings suggest that the proposed method differs from 
traditional alignment methods and can thus be considered a easier solution for SINS alignment. 

Introduction 
The alignment process is very important for a strapdown inertial navigation system (SINS). The 

dead-reckoning algorithm will use the initial orientation to update the attitude information. 
The alignment condition is usually rough and is full of all kinds of noise and disturbance, to the 

extent that the initial coarse attitude errors are large. Moreover, the SINS system models are nonlinear, 
thus nonlinear filters are more proper than Kalman filter. The extended Kalman filter, the unscented 
Kalman filter[1], the quadrature Kalman filter[2], the cubature Kalman filter[3,4], the sparse-grid 
quadrature Kalman filter[5,6], and the sparse-grid quadrature Kalman filter based on the 
Kronrod–Patterson rule[7] among others are proposed. Compared with the EKF and UKF, the 
estimation accuracy level of SG-KP-QKF can be flexibly controlled. In addition, the SG-KP-QKF is 
more efficient than the QKF with similar performance[7].  

A novel alignment method is proposed. When SINS does the alignment, the body linear velocity is 
usually zero. Under this condition, the method uses the SG-KP-QKF as the nonlinear filter and 
compares the local gravity vector with the specific force. The advantage of this approach is that the 
outputs of the nonlinear SG-KP-QKF are directly the Euler angles, the updating of which is 
simultaneously realized in the filter time updating. Thus, navigation computation is no longer needed. 
Finally, the method is verified by IMU experimental data, and the alignment results show that the 
method can obtain accurate initial attitude. The method is very simple and easy to implement, as well as 
provides a new solution for SINS alignment.  

The remainder of this paper is organized as follows: Section II presents the SINS alignment models, 
including the system equations and the measurement equations. Section III discusses the SG-KP-QKF 
algorithm. Section IV demonstrates the alignment performance of the novel method by using IMU 
experimental data on a three-axis turntable. Section V concludes.  

SINS Alignment Models 
The propagation of the Euler angles, is governed by the following differential equations: 
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where θ, γ, ψ are the pitch, roll and heading Euler angles.  

3rd International Conference on Material, Mechanical and Manufacturing Engineering (IC3ME 2015)

© 2015. The authors - Published by Atlantis Press 959



 

Assuming that the vehicle linear velocity is zero, b
nbω  can  be simplified as 

b b b n
nb ib n ie= −ω ω C ω                 (2) 

where = - , - , -
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ib ibx ibx iby iby ibz ibzω δω ω δω ω δω  % % %ω , , ,
b
ibx y zω% and , ,

b
ibx y zδω are the gyroscope outputs and errors along x, 

y, z-axis of body. 
    The fiber gyroscope errors and the accelerometer errors are modeled as the sum of a Gaussian white 
noise and a bias expressed in the b-frame, which are defined as  

, ,b b b
ibx gx gx iby gy gy ibz gz gzw w wδω ε δω ε δω ε= + = + = +             (3) 

, ,b b b
ibx ax ax iby ay ay ibz az azf w f w f wδ δ δ= ∇ + = ∇ + = ∇ +            (4) 

The instrument bias dynamics may be represented by 
 =0, =0, =0, =0, =0, =0ax ay az gx gy gzε ε ε∇ ∇ ∇& & & & & &      (5) 

The state vector can be expressed in component form as 
[ , , , , , , , , ]T

ax ay az gx gy gzθ γ ψ ε ε ε= ∇ ∇ ∇x       (6) 
The system noise vector can be written as 

[ , , ,0,0,0,0,0,0]T
gx gy gzw w w=w       (7) 

where w is normally distributed (Gaussian) with a power spectral density of Q. 
According to the selected state vector and the system noise vector, Eqs.1 and 5 can be combined 

and expressed in state space form as 
( ) ( )= +&x F x G x w        (8) 

where F(x) is the nonlinear state transfer function, and G(x) is the system noise input function.  
A fourth-order Runge–Kutta scheme with two steps between successive inertial sensor sampling 

instances is employed for numerical integration. Then the continuous system equation is converted to a 
difference equation to give 

1 1( )k k k− −= +x F x w        (9) 
where E[ ] 0, E[ ]T

k k j k kjδ= =w w w Q , 1( ) ( )T
k k k T=Q G x QG x , G(xk) is the discrete form of G(x) at time tk, and 

T1 is the discrete time interval. 
Assuming that the vehicle linear velocity is zero, for a terrestrial navigation system operating in the 

local geographic reference frame, the navigation equation can be simplified as 
 n n= −g f        (10) 

where gn=[0,0,-g]T, n n b
b ib=f C f , = - , - , -

Tb b b b b b b
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% % %f , , ,
b

ibx y zf%  are the accelerometer outputs 
along x, y, z-axis of body. 

gn is a constant vector that we can set as the reference measurement. Hence, measurement vector 
can be expressed as  

[0,0, ]Tg= −z        (11) 
The measurement noise vector can be expressed as 

[ , , ]T
ax ay azw w w=η       (12) 

where η is modeled as additive Gaussian white noise with a power spectral density of R. 
According to Eq.11, Eq.12, and Eq.6, the measurement equation (Eq.10)is can be written in 

state-space form as 
( ) ( )= +z H x U x η       (13) 

where H(x) is the nonlinear measurement function, and U(x) is the measurement noise input function.  
The measurement at time tk can be expressed in terms of the state as 

( )k k k= +z H x η       (14) 
where E[ ] 0, E[ ]T

k k j k kjδ= =η η η R , 2( ) ( ) /T
k k k T=R U x RU x , T2 is the discrete time interval, E[ ] 0T

k j =w η . We 
assume that T2 and T1 are the same as the sensor data updating cycle T. 
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SG-KP-QKF Algorithm  
The SG-KP-QKF utilizes the Kronrod–Patterson rule to determine the univariate quadrature point 

sets with a range of accuracy levels, which are then extended for the multi-dimensional point sets using 
the sparse-grid technique. Xianghong et.[7] give the detailed process to generate the univariate 
quadrature point sets and the multi-dimensional point sets of the SG-KP-QKF. According to the 
reference[7], we can calculate the multi-dimensional points and weights of the SG-KP-QKF as shown 
in Table 1. 

Table 1  Quadrature point sets of the SG-KP-QKF (L=3, d=9) 
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If the univariate point sets are determined based on the Gauss–Hermite rule[5], and such filter is 
named as the SG-GH-QKF and to minimize the total number of multi-dimensional point sets, the 
multi-dimensional points and weights are shown in Table 2. 

Table 2  Quadrature point sets of the SG-GH-QKF (L=3, d=9) 
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where (ξj, aj) are the quadrature points and corresponding weights.  
From Tables 1 and 2, under the condition of the same level L and dimension d, the total quadrature 

point number of the SG-KP-QKF is 163, and the total quadrature point number of the SG-GH-QKF is 
181. Thus, the nest feature of the SG-KP-QKF univariate points is more efficient than that of 
SG-GH-QKF. 

Simulation  
The simulation data are collected from a prototype navigation grade IMU on a three-axis turntable. 

The turntable rotates along its three vertical axes, the swaying frequency is 0.2 Hz. The swaying 
amplitude is 5°. To varify the accuracy of the initial alignment, near the end of the alignment, the 
turntable stops at the position of which the heading is 0°. The sensor data are sampled at 200 Hz. The 
simulation total time is 30 minutes, of which the first 5 minutes are used for the coarse alignment. The 
last 25 minutes are used for the fine alignment. The three accelerometer biases and noises are all less 
than 0.2 mg, whereas the three gyroscope biases and noises are all less than 0.03 ° / h. The initial 
latitude is 26.5017°N, and longitude is 106.71667°E. 

The attitude errors at the end of the fine alignment are shown in Table 3. 

Table 3  Attitude errors 

Pitch error Roll error  Heading error 
-0.54′ 0.28′ 11.62′ 
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The pitch and roll errors converge rapidly in approximately 20 seconds. The heading alignment 
error converges more slowly than tilt errors, and the convergence time is approximately 60 seconds. 
This alignment feature is similar to that of the traditional methods. 

Fig. 1 shows the figures of the Euler angles in the last 2 minutes of fine alignment. 
 

 
Fig. 1 Euler angles 

According to the above discussion and simulation results, both the alignment errors and 
convergence time can meet the requirements of alignment. Thus, the novel direct and nonlinear SINS 
alignment method using the SG-KP-QKF is proven practical. 

Summary 
In this paper, a novel direct and nonlinear SINS alignment method using the SG-KP-QKF is proposed. 
The results of the simulation using IMU experimental data show that the novel alignment method can 
achieve small alignment errors in a short convergence time and can thus effectively accomplish the 
initial alignment. Furthermore, compared with the conventional SINS alignment methods, the 
proposed method is easier to apply. The system and measurement equations are primarily the 
navigation equations without any approximations, which make the models very simple. The results of 
this paper prove that the proposed method is a novel idea for SINS alignment. 
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