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Abstract. There has a constant barrage of worms over the internet in recent years. In order to 
effectively prevent worm spreading, researchers are trying to understand the behavior of the worm 
propagation with the aid of epidemiological models. In this paper a worm propagation model with time 
delay and quarantine strategy is proposed and discussed. The spreading dynamics of the worms is 
analyzed, the spreading critical threshold and equilibriums are derived. The global stability of 
equilibriums is proved and numerical simulations are presented to confirmed the analytical results. 

Introduction 
Computer worms are an increasing problem throughout the world. Staniford et al. describe a worm 
that could infect the entire Internet in about 30s [1]. Researchers are trying to understand the behavior 
of the worm propagation with the aid of epidemiological models[2-11]. Both traditional and 
network-based epidemiological models have been applied to computer contagion. The traditional 
epidemiological model is Kermack-Mckendrick model. There are four main illustrative networks , each 
of which is vulnerable to attack: (A) a network of possible connections between computers using the 
Internet Protocol (IP), (B) a network of e-mail messages passed between users, (C) a network of 
e-mail address books, and (D) a network of shared administrator accounts for desktop computers. In 
network A, we consider nodes are IP addresses and two nodes are connected if communication is 
possible between the corresponding computers. So all nodes have the same degree in network A  

In this paper, we mainly study the dynamic behavior of epidemic in network A. The remainder of the 
paper is organized as follows. Section 2 gives a brief review of the classical Kermack-Mckendrick 
model. Section 3 presents an extended worm spreading model, and the critical threshold value and 
equilibriums are derived. In section 4, we study the globally asymptotical stability of the equilibriums. 
In Section 5, the numerical simulations are provided. At last a brief conclusion is given in Section 6.  

Classical General Epidemic Model: Kermack-Mckendrick Model 
Kermack-Mckendrick model is also called the classical SIR  epidemic model. Nodes that are 
vulnerable to be infected are called susceptible nodes, nodes that have been infected called infectious 
nodes, nodes that are immune or dead are called removed nodes. The density of susceptible, infectious 
and removed nodes is denoted by ( )S t  , ( )I t  and ( )R t  separately at time  t . The SIR  model is  

dS ISdt
dI IS Idt
dR Idt

β

β α

α

 = −

 = −

 =


. 

 
where β  is the infection rate; α  is the rate of removal. 
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An Extension for the SIR model with Time Delay and Quarantine strategy 
In order to reduce transmissions of infectious nodes one efficient measure is to isolate infectious nodes. 
So, we introduce a class Q  of quarantined nodes. Considering the loss of immunity, the removed 
nodes )(tR join the susceptible nodes ( )S t τ+ at time t τ+  again. Using the same notation as the SIR  
model we obtain a differential system with time delay and quarantine strategy: 
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  (1) 
 

Where L  is increase rate, d is the decrease rate, δ is the quarantinable rate, ε  is the loss rate of 
immunity , the other parameters are the same as the SIR  model in the previous sections. At the same 
time we assume that the new nodes are all susceptible. The total nodes size N  satisfies 'N A dN= − . 
So the feasible region of system (1) is 4{( , , , ) / }M S I Q R R S I Q R A d+= ∈ + + + ≤ , and M is the 

positively invariant region. Let ( )
L

d d
βρ

δ
=

+
. System (1) has possibly two equilibriums: the disease-free 

equilibrium 0( / ,0,0,0)E L d and the positive equilibrium * * * * *( , , , )E S I Q R , where 
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Obviously, we obtain theorem 1. 
Theorem 1. There always exists a disease-free equilibrium 0E  and when 1ρ > , system (1) has a 
positive equilibrium *E .  

The Stability of Equilibriums 

Theorem 2. 0E  is globally asymptotically stable for 1ρ ≤  and is unstable for 1ρ > . 
Proof. The Jacobian matrix at 0E  is 

 
0 0

0 0
0

0 0
0 0
0 (1 )
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d
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. 

 
Obviously, If 1ρ ≤  0E is locally asymptotically stable, If 1ρ >  0E is unstable. For 1ρ ≤ , using the 
Lyapunov function V I= with the Lyapunov derivative along the solutions of system (1) , we get 

 
' [ / ( )] 0V IS dI I L d d Iβ δ β δ= − − ≤ − + ≤ . 

 
By the limiting equation theory and the Lyapunov-LaSalle invariance principle, 0E  is globally 
asymptotically stable. This completes the proof. 
Theorem 3. If 1ρ > , *E  is globally asymptotically stable in the region { }( , , , ) 0M S I Q R I− = . 
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Proof. The Jacobian matrix at *E  is  
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* *
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Obviously, If 1ρ >  *E is locally asymptotically stable. In order to prove the global asymptotic 
stability, consider the SI  subsystem of system (1). The Lyapunov function 
 

* *

* *
* ( )S I

S I

u d S u dS AV S du duu u
β δ β− + + −= +∫ ∫  

 
is positive definite and goes to infinity as S→+ ∞  or I→+ ∞ . Using *S dβ δ= + , the V  derivative is  

 
' * * * * *( ) ( )( )( ) / ( )( )d dt e t eV S S S L SI dS Q S S I dS L Q S Sτ ττ τβ β ε β β ε− −+ − − −= − − − + + − −  

          * 2( ( ) )( ) / 0dL Q t e S S Sτβ ε τ −≤ − + − − ≤   
 

Note that ' 0V =  on the set where *S S= . The largest positively invariant subset is the equilibrium 
* *{( , )}S I , so that the Lyapunov-Lasalle theorem[12] implies that * *( , )S I  is globally stable in 2R+  and 

*lim ( )
t

I t I
→+∞

= . From the third equation in system (1) we obtain 

 

0
0 0 0( ) { ( ) exp[( )( )] }exp[ ( )( )].

t

t
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By L’Hospital’s rule we get 
*

*( ) ( )lim ( ) lim
t t

I t I tQ t Qd d
δ δ
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= = =
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. Similarly, 
*

*(1 )lim ( ) lim
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τεδ −
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−= =  . 

Form the above analysis, *E is globally attractive. Considering the locally asymptotical stability of *E , 
*E  is globally asymptotically stable in the region {( , , , ) 0}M S I Q R I− = .  This completes the proof. 

Numerical Simulations 
The sum of the infectious nodes and quarantined nodes, i.e. the whole infected nodes is regarded as a 
coordinate quantity, so use S , I Q+  and R  to construct coordinate system. The general system is 
configured as 3, 0.001L d= = , 0.0001β = , 0.05ε = . Let the initial value be (800,100,0,0). 

                     
Fig.1. The trajectory of system (1) at 1 0.4δ =           Fig.2. The trajectory of system (1) at 2 0.2δ =  
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We assume time delay 0τ =  in Fig.1 and Fig.2. From Theorem 2 we can get the critical value of 
quarantinable rate 0 0.299δ = . Fig.1 shows that when 1 0.4δ = , which is larger than 0δ , the trajectory 
of system (1) tends to the disease-free equilibrium 0 (3000,0,0,0)E . Fig.2 shows that when 2 0.2δ = , 
which is less than 0δ , the trajectory of system (1) tends to the positive equilibrium *(1987,9,16,988)E . 

 
Fig.3.  The relations between *I  and τ  

We assume quarantine rate 0.2δ =  in Fig.3. Fig.3 shows that when time delay τ  increases the 
corresponding steady infection density *I  decreases.  

Conclusions 
In this paper an extended worm propagation model with time-delay and quarantine strategy is 
presented. We have analyzed and obtained the existence conditions of the spreading threshold and 
equilibriums. The globally asymptotical stability of equilibriums and sufficient conditions are studied. 
Theoretical analysis and computer simulations have shown that time delay and quarantine strategy can 
decrease the steady infection density of the systems. The study has valuable guiding significance in 
effectively preventing worm spreading.  

Acknowledgments. This work is partially supported by the National Natural Science Foundation of 
China under Grants 61471163.                                                                                                   

References 

[1] S. Staniford, V. Paxson, and N. Weaver, How to Own the Internet in Your Spare Time, 
Proceedings of the 11th USENIX Security Symposium, 149-167, 2002. 

[2]  G. Zhu, X. Fu, G.Chen, Commun. Nonlinear Sci. Numer. Simul. 17 (2012) 2588-2594. 

[3]  Yoichi Enatsu, Yukihiko Nakata, Yoshiaki Muroya, Acta Math. Sci. 32 (2012) 851-865.  

[4]  J. Lou, T. Ruggeri, J. Math. Anal. Appl. 365 (2010) 210-219. 

[5]  S. Eubank, H. Guclu, Nature. 429 (2004) 180–184. 

[6]  L. Wang, G. Dai, SIAM J. Appl. Math. 68 (2008) 1495-1502.  

[7]  R. Pastor-Satorras, A. Vespingani, Phys. Rev. Lett. 63 (2001) 066177.   

[8]  L. Wang, G. Dai, SIAM J. Appl. Math. 68 (2008) 1495-1502. 

[9] M. Barthelemya, A. Barratb, J. Theor. Biol. 235 (2005) 275-288. 

[10] R. Pastor-Satorras, A. Vespingani, Phys. Rev. E 65 (2002) 035108. 

[11] A. Donofrio, Nonlinear Anal.: Real Word Appl. 9 (2008) 1567-1572. 

[12] J.K. Hale, Ordinary Differential Equations, 2nd Ed., Krieger, Basel, 1980.  

1044




