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Abstract. In the free-floating mode, dynamic coupling exists between the manipulators and the 
spacecraft base of space robot, and the base attitude and position are easily disturbed by the motions of 
the manipulators. In this paper, firstly, the angular momentum conservation equation is analyzed. Then, 
the objective function is defined according to the change of the base attitude. Finally, the joint path is 
parameterized by using a cosine function and the coefficients of the cosine function are set as 
optimization parameters. Considering the Standard Genetic Algorithm is easily premature and has slow 
convergent speed, Adaptive Genetic Algorithm is adopted in this paper to search the optimal 
parameters. Simulation results show that the obtained joint path is smooth, the angular velocity has no 
sudden change and the base disturbance meets the demand, which prove the effectiveness of this 
method. 

Introduction 
Space robots generally consist of a spacecraft platform (satellite, space shuttle, etc) and one or more 
manipulators mounted on it. Space robots are under continued concern because of their advantage in 
on-orbit services, space debris removal and refueling that are inaccessible or too risky for astronauts to 
act. Compared to the robots on ground, space robots are not fixed at one point, resulting in dynamic 
coupling between the manipulators and their spacecraft platforms. The motions of the manipulators 
induce disturbances to the position and attitude of the spacecraft, especially when the ratio between 
manipulators and the spacecraft is large. Of course, these disturbances can be compensated by thruster 
jets or momentum wheels that mounted on the spacecraft, but thruster jets are very expensive and 
momentum wheels have maximum limit, so it is very important to reduce the disturbances to the 
spacecraft. 

The linear momentum and angular momentum of space robots satisfy the conservation equations 
when no external forces or torques act on the system and when the total momentum of the system is 
zero, and because of the non-integrability of the angular momentum, the system exhibits nonholonomic 
behaviors[1], which increases the difficulty of control and trajectory planning of space robots. Vafa and 
Dubowsky[2] developed the disturbance map using the virtual arm modeling method, which displays 
the motion directions of the manipulators that generate maximum and minimum disturbances to the 
spacecraft in joint space. Y. Umetani and K. Yoshida[3]proposed the concept of generalized jacobian 
matrix which was used to plan the space robot trajectory, but because of the dynamic singularities the 
trajectory was not always achieved. E. Papadopoulos[4,5] employed polynomial functions to drive the 
system to a desired configuration in finite and prescribed time based on mapping the nonholonomic 
constraint to a space where it can be satisfied trivially. Wenfu Xu[6] studied the stability of the space 
robot with a balance arm, and presented the concept of system centric equivalent manipulator, also 
two typical applications using this method are given. Yan Li[7] set up the joint angular probability as 
input variables, and set the least energy cost as the main objective function, and finally the genetic 
algorithm was applied to get the optimized variables. Zhong Shi[8] used the high order polynomials to 
approach the trajectories of the joint angles, and set the coefficients of the interpolation polynomial as 
the optimization parameters. Then particle swarm optimization  algorithm was applied to achieve the 
optimal trajectory. Hongwei Xia[9] obtained the joint trajectories that generate minimum disturbance 
to the spacecraft based on the chaos particle swarm optimization algorithm. 
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In this paper, the nonholonomic behaviors are used and only by controlling the joint angles, the 
manipulators joint angles and the spacecraft attitude can obtain the desired state simultaneously. Since 
standard genetic algorithm is easy to premature convergence, a new algorithm called adaptive genetic 
algorithm is used to get the optimal parameters. Simulation example states that compared to the 
standard genetic algorithm, adaptive genetic algorithm can converge to the global optimal solution 
faster. Furthermore, the planned trajectories are smooth and disturbances to the spacecraft are in line 
with expectations which demonstrates the effectiveness of the proposed method.  

Kinematic Equations of the Space Robot System 
A single-arm space robot system consists of the spacecraft platform and n-link manipulators, as shown 
in Fig 1. Assumptions: (1) ignoring the flexibilities of all arms and joints, so they can be taken as rigid; 
(2) the joints are rotary joints, and only have one degree of freedom; (3) ignoring external forces and 
moments (gravity, engine thrust, etc.). 

 
Fig1. The General Model of a Space Robot System 

In Fig 1, some symbols and variables are defined as follows: 
I∑ , i∑ ( 0,1... )i n=     inertia frame and ith body fixed frame 

0B , iB ( 1,2,..., )i n=      the spacecraft and ith link of the manipulator 
CM                              the center of the space robot system 

( 1, 2,..., )ik i n=             unit vector representing the rotation direction of ith joint 
( 1, 2,..., )i i nϕ =             rotation angle of ith joint 

ir ( 0,1... )i n=                position vector from the origin of inertia frame to the center of ith link 

is ( 0,1... )i n=               position vector from the origin of inertia frame to the ith joint 

ic ( 0,1... )i n=               position vector from the ith joint to the center of ith link 

id ( 0,1... )i n=              position vector from the center of  ith link to the i+1th joint 
In free-floating mode, according to the proposed assumptions, linear momentum and angular 
momentum of space robot systems satisfy the conservation law, and the relationship between the 
spacecraft and the joint angular velocity of the manipulator can be expressed as Eq 1[3]. 
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where M is the total mass of the space robot system, 0v  and 0ω  denote the linear velocity and 

angular velocity of the spacecraft, respectively, and 
1 2[ , ,... ]T

nϕ ϕ ϕΦ =
  

&  denotes the angular velocity 

of the joints. The other symbols are defined as Eq 2 to Eq 7. 
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The Trajectory Planning in Joint Space 

Choice of Objective Function. Depending on space missions, the evaluation to the space robot 
trajectory planning is different. Taking the communication, observation, etc. before and after the 
motion of the space robot into account, the attitude change of the space robot must be limited. So the 
objective function can be written as Eq 8. 

Q

Q
J

K
δ

=  .                                                                                                                                    (8) 

 where ( )TQ Q Qδ δ δ=  denotes the attitude change before and after the motion of the space robot, 
and QK  denotes the attitude control accuracy. 

As shown in Eq 8, if 1J ≤ , then it can be taken that the result has achieved convergent requirements. 
The Trajectory Planning Method.  The trajectory planning in space joint is in fact planning a function 
of time, the time derivative of the first order and second-order to describe the movement of joints. To 
ensure the smooth movement of joints, trajectories and their derivatives must be continuous, 4-order or 
more than 4-order polynomial can meet these requirements [5]. Taking the ranges of the joint angles 
into account, cosine function can be used to parameterize the joint angles, as shown in Eq 9. 

7 6 5 4 3 2
1 7 6 5 4 3 2 1 0 2( ) cos( )i i i i i i i i i i it m t m t m t m t m t m t m t mϕ = ∆ + + + + + + + + ∆  .                                               (9) 

where 0 7i im m denotes the unknown coefficients in cosine functions; 1i∆ and 2i∆ can be defined as 
shown in Eq 10. 
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where maxiϕ  and miniϕ  denote the upper limit and lower limit of the ranges of the joint angles, 
respectively. 

Then the angular velocity and angular acceleration are the first and second order time derivatives of 
the joint angle shown in Eq 9, respectively, and are shown as Eq 11 and Eq 12. 
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Considering the conditions of the joints at initial and terminal states, some equations can be obtained 
as shown in Eq 13. 
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0 0( )tΦ = Φ  , 0( ) 0tΦ =& , 0( ) 0tΦ =&&  , ( )f dtΦ = Φ , ( ) 0ftΦ =&  , ( ) 0ftΦ =&&    .                                   (13) 
where 0 10 20 0[ , ,..., ]nϕ ϕ ϕΦ = . 

Then the coefficients in cosine function can be easily derived from Eq9, Eq11, Eq12 and Eq13, as 
shown in Eq14 to Eq18. 
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So, the unknown coefficients in cosine function are only 7im  and 6im . If we define 

17 16 27 26 7 6[ , , , , ..., , ]n nm m m m m m m=  , then Qδ  can be written as ( )Q Q mδ δ= . The trajectory planning 
method of space robot then can be described that, first using the cosine function to parameterize the 
joint angles, and then employing the optimization algorithm to seek for the optimal m , and last 
obtaining joint trajectories , angular velocities and angular accelerations using Eq 9, Eq 11 and Eq 12. 

Trajectory Planning Based on Adaptive Genetic Algorithm 
Genetic algorithm was founded based on Darwin’s theory of evolution and Mendelism, which imitated 
the process of evolution and referred to random statistical theory. Genetic algorithm can be viewed as 
an evolutionary process wherein a population of solutions evolves over a sequence of generations, and 
it is hoped that during this evolutionary process the fitness of the population can come near to the 
optimal value. However, the standard genetic algorithm usually has slow convergent speed and often 
has premature phenomenon in engineering applications.  

In those parameters that affect the performance of genetic algorithm, the cross probability cP  and 
mutation probability mP  are the most important. During the computing process of standard genetic 
algorithm, cP  and mP  are fixed. The higher the value of cP , the quicker are the new solutions 
introduced into the population, however, exorbitant value of cP  may exploit the solutions which have 
relatively high fitness values. The lower the value of mP , the harder are the encodings changed, however, 
too large value of mP  may transform the genetic algorithm to a purely random search algorithm. To 
overcome the above-stated problem, in this paper, a new optimal technique called adaptive genetic 
algorithm is introduced. The main idea of adaptive genetic algorithm is that cP  and mP  can adaptively 
in response to the fitness values of the solutions, that is, giving lower values of  cP  and mP  for those 
solutions whose fitness values are higher than mean fitness values and giving higher values of  cP  and 
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mP  for those solutions whose fitness values are lower than mean fitness values. Then the expressions 
for cP  and mP  can be written as in Eq 19 and Eq 20. 
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In order to have a faster convergent speed, the classic roulette method and elite preserving strategy 
were introduced, and considering that the unknown parameters in m  were as many as twelve, 
two-point crossover method was introduced. 

The procedures to plan the trajectory of space robot using adaptive genetic algorithm are shown as 
follows: 

Step 1. Encode the parameters in m  with binary code as the initial population and let generation 
number gen=1. 

Step 2. Define the fitness function as shown in Eq 21. 
1/F J= .                                                                                                                                       (21) 

where J  is the objective function defined in Eq 8. 
Step 3. Generating a new population using reproduction, crossover and mutation operators 

according to the fitness values computed in step 2. 
Step 4. Let gen=gen+1, and if population number gen is bigger than the maximum population 

number then jumps to step 5, else jumps to step 2. 
Step 5. Output the best solution m . 

Simulation Example 
In order to verify the effectiveness of the above-stated trajectory planning method, a six-DOF space 
robot is introduced, and the mathematical model is given, and at last Matlab is used to get the final 
output. The dynamical parameters of the space robot are shown in Table 1. 

Table 1. Dynamical parameters of the space robot 

   Mass 
[kg] 

Length [m] Moment of inertia [kg.m2] 
ia  ib  Ixx Iyy Izz 

spacecraft 1700 1.75 1.75 1434 1434 1735 
Link 1 5 0.125 0.125 0.0292 0.0292 0.00625 
Link 2 50 1.25 1.25 0.0625 26.1 26.1 
Link 3 50 1.25 1.25 0.0625 26.1 26.1 
Link 4 10 0.25 0.25 0.0125 0.215 0.215 
Link 5 5 0.125 0.125 0.00625 0.0292 0.0292 
Link 6 5 0.125 0.125 0.0292 0.0292 0.00625 

  
Supposed that the initial joint angles and terminal joint angles are as shown in Eq 22. 

0 0 0 0 0 0
0 [0 0 0 0 75 0 ]Φ =   5   − 2   1     3 ,              0 0 0 0 0 0[10 5 10 40 50 0 ]dΦ =   −         .                             (22) 

The ranges of joint angles are shown in Table 2. 
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Table 2. The ranges of joint angles 
Joint  Ranges of joint angles [°] 

1 [-100,100]] 
2 [-120,200] 
3 [-150,150] 
4 [-150,200] 
5 [-100,100] 
6 [-200,200] 

The initial attitude angles of the spacecraft are 0 0 0(0) [5 ,5 ,5 ]TΨ = , and the terminal attitude angles 
of the spacecraft are 0 0 0( ) [0 ,0 ,0 ]T

ftΨ = , and the planned time is 5ft s= . The adaptive genetic 
algorithm parameters are set as: initial population number npop=50, generation number nger=200, 
crossover probability and mutation probability are defined as in Eq 19 and Eq 20. 

The standard genetic algorithm and adaptive genetic algorithm are used to seek for the optimal 
solutions using the above-stated technique, respectively. The results are shown is Eq23 and Eq24, 
including the objective function values and the resulted m . 

3

0.012
[0.09770  0.2001   0.5079  -0.9648  -0.9019  -0.06389  0.1892 -0.9434

 -0.9998 -0.9736  0.3391 0.7420] 10

SGA

SGA

J
m

−

=
 =
 ×

  .                                        (23) 

3

0.0011
[0.08546 -0.3300 0.3928  0.6595 -0.9288  0.9575  -0.7852 0.9115 

-0.9138 -0.05954 -0.9572 -0.8650] 10

AGA

AGA

J
m

−

=
 =
 ×

.                                              (24) 

The best fitness values of each generation of the standard genetic algorithm is shown as Fig 2, and 
the best fitness values of each generation of the adaptive genetic algorithm is shown as Fig 3. 

                             

Fig 2. The best fitness values of each                          Fig 3. The best fitness values of each 
generation of the standard genetic algorithm                 generation of the adaptive genetic algorithm 

As shown in Fig 3, it is at the 45th generation that the result comes near to the convergent value, 
however, as shown in Fig 2, it is at the 60th generation that the result comes near to the convergent 
value. At the end of the computing process, the objective value of the standard genetic algorithm is 
0.012, and the objective value of the adaptive genetic algorithm is 0.0011. Thus, the simulation results 
shows that, compared to the standard genetic algorithm, the adaptive genetic algorithm have a faster 
convergent speed and the global searching performance is much better.  

Taking the resulted m  into Eq 9 and Eq 11, we can obtain the joint angles and the joint angular 
velocities, as shown in Fig 4 and Fig 5, respectively. And the variation of the spacecraft attitude angles 
is shown in Fig 6. 

As shown in Fig 4, the planned trajectories of joint angles are very smooth, and during the motion 
process the joint angles are limited into the ranges that are allowed, and after the motion the joint 
angles reached the desired angles. As shown in Fig 5, the joint angular velocities have no sudden 
change and the changes of the spacecraft attitude angles are relatively small in x and z directions, and 
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although the change of attitude angle is relatively big in y direction, however, it also reaches the desired 
angle at the terminal time. 

 

Fig 4. Joint angles vs planned time              Fig 5. Joint angular velocities       Fig 6. the variation of the spacecraft  
vs planned time                                   attitude angles 

Summary 
(1) By making use of the nonholonomic behaviors of the space robot and using the cosine functions 

to parameter the joint trajectories, the trajectory optimization problem has transformed into the 
coefficients optimization problem of cosine functions. 

(2) Using the adaptive genetic algorithm to get the optimal results which overcomes the 
disadvantages of premature and slow convergent speed. 

(3) The trajectory planning method is given, and simulation example has verified the effectiveness of 
the above-stated method. 
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