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Abstract. Monte Carlo method (MCM) for evaluation of measurement uncertainty is a beneficial 
supplement to the “Guide to the expression of uncertainty in measurement” (GUM). This paper 
introduces the method and the steps of measurement uncertainty evaluation by MCM based on 
LabVIEW, and an example is given out to validate the effect of measurement uncertainty evaluation by 
Monte Carlo method.  

Introduction 
In 2008, Joint Committee for Guides in Metrology (JCGM) issued a Supplement 1 to the “Guide to 

the expression of uncertainty in measurement” (GUM) - Propagation of distributions using a Monte 
Carlo method (MCM). The present Supplement 1 is intended to give added value to the GUM by 
providing guidance on aspects of uncertainty evaluation that are not explicitly treated in the GUM [1].  

A mathematical tool or a programming software is required while using MCM to calculate the 
measurement uncertainty. Reference [2, 3, and 4] introduced the way to evaluate measurement 
uncertainty by MCM based on MATLAB. Reference [5, 6] introduced the measurement uncertainty 
evaluation of monitor energy efficiency and total sulphur in coal by MCM based on Mathcad 
respectively. Reference [7] used Visual Basic to calculate measurement uncertainty by MCM. 
Reference [8] introduced the steps of measurement uncertainty evaluation by MCM based on Crystal 
Ball. 

Those software introduced above have relatively higher requirements to measuring technical 
personnel, while LabVIEW has relatively lower requirements for its graphical programming. 
References [9, 10] have used LabVIEW to calculate the measurement uncertainty by GUM. This paper 
introduces the method and the steps of measurement uncertainty evaluation by MCM based on 
LabVIEW, which is significant to measuring technical personnel for calculating the measurement 
uncertainty by MCM. 

Monte Carlo method (MCM) 
MCM is a general numerical approach for carrying out the calculations required as part of an 

evaluation of measurement uncertainty. The main stages of MCM are as follows [1]. 
1) Determine the input quantities X1, …, XN, the output quantity Y, and develop a model relating Y 

and X, that is Y = f ( X1, …, XN ). 
2) On the basis of available knowledge assign PDFs - Gaussian (normal), rectangular (uniform), etc. 

- to the Xi, and select the number M of Monte Carlo trials. 
3) Generate M vectors, by sampling from the assigned PDFs, as realizations of the (set of N ) input 

quantities Xi, for each such vector, form the corresponding model value of Y, yielding M model values, 
that is  

1 2( , , , )r r r Nry f x x x= L , r=1, …, M.                                                                                                                     (1) 
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4) Sort these M model values into strictly increasing order, using the sorted model values to provide 
a discrete representation G of the distribution function GY (η) for the output quantity Y. 

5) Use G to form an estimate y of Y , the standard uncertainty u(y) associated with y, and an 
appropriate coverage interval [ ylow，yhigh ] for Y , for a stipulated coverage probability p. 

Sampling from the input quantities 

Rectangular distributions R(a, b). To sample from R (a, b), make a draw r from the standard 
rectangular distribution R (0, 1), and form 

raba )( −+=ξ                                                                                                                                                          (2) 

Where, a is the lower limit of the rectangular distribution, and b is the upper limit of the rectangular 
distribution. 

In LabVIEW, the block diagram of sampling from rectangular distributions shows as Fig. 1. 

 

Figure 1. Sampling from rectangular distributions 
Trapezoidal distributions Trap (a, b, β). To sample from Trap (a, b, β), make two draws r1 and r2 

independently from the standard rectangular distribution R (0, 1), and form  

( ) ( )[ ]21 11
2

)-( rraba ββξ −+++=                                                                                                                       (3) 

Where, a is the lower limit of the trapezoidal distribution, b is the upper limit of the trapezoidal 
distribution, and β  equal to the ratio of the semi-width of the top of the trapezoid to that of the base. 

In LabVIEW, the block diagram of sampling from triangular distributions shows as Fig. 2. 

 
Figure 2. Sampling from trapezoidal distributions 
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Triangular distributions T (a, b). To sample from )T( b,a , make two draws r1 and r2 independently 
from the standard rectangular distribution R(0, 1), and form 

( )212
- rraba ++=
）（

ξ                                                                                                                                        (4) 

Where, a is the lower limit of the triangular distribution,  and b is the upper limit of the 
triangular distribution. 

In LabVIEW, the block diagram of sampling from triangular distributions shows as Fig. 3. 

 
Figure 3. Sampling from triangular distributions 

Arcsine distributions U (a, b). To sample from U(a, b), make a draw r from the standard rectangular 
distribution R(0, 1), and form 

）（ rabba π2sin
22
−

+
+

=ξ                                                                                                                                   (5) 

Where, a is the lower limit of the Arcsine distribution, and b is the upper limit of the Arcsine 
distribution. 

In LabVIEW, the block diagram of sampling from Arcsine distributions shows as Fig. 4. 

 
Figure 4. Sampling from Arcsine distributions 

Gaussian distributions ))(N( 2 xu,x . To sample from ))(N( 2 xu,x , make a draw r from the standard 
Gaussian distribution N(0, 1), and form 

rxux )(+=ξ                                                                                                                                                (6) 

Where, x  is the mean value of X, and ( )u x  is the standard uncertainty of X. 
In LabVIEW, the block diagram of sampling from Gaussian distributions shows as Fig. 5. 
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Figure 5. Sampling from Gaussian distributions 
t-distributions ))(( 2 n/xu,xtv . To sample from ))(( 2 n/xu,xtv , make a draw r from the central 
t-distribution tν with ν = n −1 degrees of freedom, and form 

r
n
xux )(

+=ξ                                                                                                                                                            (7) 

Where, x is the mean value of X, and ( )u x  is the standard uncertainty of X. 
In LabVIEW, the block diagram of sampling from t-distributions shows as Fig. 6. 

 
Figure 6. Sampling from t-distributions 

Exponential distributions )1( x/Ex . To sample from )1( x/Ex , make a draw r from the standard 
rectangular distribution R(0, 1), and form 

rxln-=ξ                                                                                                                                                      (8) 

Where, x is the best estimate of X. 
In LabVIEW, the block diagram of sampling from exponential distributions shows as Fig. 7. 

 
Figure 7. Sampling from exponential distributions 

Creating sub VIs for the sampling program 
After we have built some sampling programs, we can use them in another VI. A VI called from the 

block diagram of another VI is called a sub VI. A sub VI node corresponds to a subroutine call in 
text-based programming languages. To create a sub VI, we need to create an icon and build a 
connector pane. This paper create sub VIs from existing VIs (Fig. 1 to Fig. 7), and use Gaussian 
distribution (Fig. 5) as an example to introduce the creating of sub VIs. 
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Creating an icon. Every VI displays an icon, shown as Fig. 8a, in the upper right corner of the front 
panal and block diagram windows. We can use the Icon Editor dialog box to edit the icon, double-click 
the icon in the upper right corner of the front panal or block diagram windows to display the Icon 
Editor dialog box, and modify the icon of the Gaussian distribution as Fig. 8b. 

                              

a) Default VI icon            b) Modified VI icon 

Figure 8. Icon of VI 

Creating a connector pane. The connector pane is a set of terminals that corresponds to the 
controls and indicators of that VI, similar to the parameter list of a function call in text-based 
programming languages.  

The connector pane of the Gaussian distribution VI (Fig. 5) shows as Fig. 9. Each rectangle on the 
connector pane represents a terminal. The left four terminals are inputs, they are the number M of 
Monte Carlo trials, the best estimate value x, the standard uncertainty ( )u x , and the interval number of 
histogram. The right two terminals are outputs, they are the sampled values and the histogram of the 
output. 

 

Figure 9. Connector pane of the Gaussian distribution VI 

Example of the application of MCM 
Using the calibration of digital multimeter (DMM) as an example, to calibrate its 100 V DC, GUM 

and MCM are used to evaluate the measurement uncertainty respectively. 
The error of indication E of the DMM to be calibrated is [11]: 

sisi VVVVE ∆−∆+−=                                                                                                                                     (9) 

Where, iV  is the  measurement result of the DMM, sV  is the output of the muti-product calibrator, 

iV∆  is the effect of the resolutio of the DMM, and sV∆  is the effect of other factors to the 
muti-product calibrator, including instrument drift, instrument bias, nonlinear, gain variation, working 
temperature, supply voltage, and load effet caused by input impedance etc.  

The uncertainty components are listed in Table 1. 

Table 1. Uncertainty components 

Influence 
quantity Estimate value [V] Standard 

uncertainty [V] PDF distributions Sensitivity 
coefficient 

iV  100.1 0 - 1 

sV  100.0 0.001 Gaussian distribution -1 

iV∆  0 0.029 rectangular distribution 1 

sV∆  0 0.0064 rectangular distribution -1 

E  0.1 - - - 
 

Gau. 
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Figure 10. The block diagram of MCM 
According to Eq. 9, the input quantities, the output quantity and the model relating Y and X are 

given out. According to Table 1, the distrubitions of input quantities are confirmed. Base on these 
known conditions, a block diagram is programmed (Fig. 10). The corresponding front panels of the 
output quantity show as Fig. 11. The results are listed in Table 2, where the number M of Monte Carlo 
trials is 1000000. The results of GUM and that of reference [11] are also listed in Table 2. According to 
Fig. 11 and Table 2, it is obvious that the results of GUM don‘t confirm to the objective laws, and the 
results of MCM are more sentific. 

 

Figure 11. Front panel of the output quantity 

Table 2. The results of different methods 

Method Mean  Standard uncertainty Distribution Coverage 
factor 

95% coverage 
interval 

GUM 0.1 0.03 Gaussian 1.96 [ 0.04, 0.16 ] 

Reference [11] 0.1 0.03 rectangular 1.65 [ 0.05, 0.15 ] 

MCM 0.1 0.15 trapezoidal — [ 0.05, 0.15 ] 

Gau. 

Gau. 
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Summary 
MCM can be applied include those in which the contributory uncertainties are not of approximately 

the same magnitude, or it is difficult or inconvenient to provide the partial derivatives of the model, as 
needed by the law of propagation of uncertainty, or the PDF for the output quantity is not a Gaussian 
distribution or a scaled and shifted t-distribution, or an estimate of the output quantity and the 
associated standard uncertainty are approximately of the same magnitude, or the models are arbitrarily 
complicated, and or the PDFs for the input quantities are asymmetric. 

This paper introduces the method and the steps of measurement uncertainty evaluation by MCM 
based on LabVIEW. The operating process is simple, the interface is intuitive, and the uncertainty 
evaluation results are reliable.  
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