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Abstract. This paper proposes a method of mechanical performance prediction of cold rolled ribbed 
steel bars based on RBF network with whole variable space. It builds a whole variable space model 
and studies the performance prediction of cold rolled ribbed steel bars based on the 5-in & 1-out 
RBF network and the performance prediction of cold rolled ribbed steel bars based on the 5-in & 
2-out RBF network. The results show that this method can reliably predict the mechanical 
performance of cold rolled ribbed steel bars, and the predictive effect of the 5-in & 1-out RBF 
network model based on whole variable space is superior to the 5-in & 2-out RBF network model. 

Introduction 
The rolling process of cold rolled ribbed steel bars is a very complex physical process. During the 
cold rolling process, original materials are subjected to repeated rolling deal, and subjected to an 
integrated complex constraint. Rolling condition and status are changing constantly. Besides that, 
the rolling process must be maintained equivalent metal flow each second between racks and 
comply with the energy conservation law. Therefore, it is very difficult to establish mathematical 
physics equations between the process parameters of cold rolled ribbed steel bars and product 
mechanical properties from the perspective of material constraints and geometric deformations 
directly [1]. 

This paper studies on mechanical performance prediction of cold rolled ribbed steel based on 
whole variable space and Radial-Basis Function (RBF) neural network. It provides mechanical 
performance prediction of cold rolled ribbed steel bars with theoretical basis and scientific method 
by using the whole variable space features and the high precision approximation performance of 
RBF network. 

The Establishment of Whole Variable Space [2-8] 
Taking any process parameter vector as a predictive sample, and denoted by x(c) which has five 
components, and denoted by x(c)

 j (j = 1, 2, …, 5). The five components represent five process 
parameters of cold rolling [3], i.e., the tensile strength of the raw material, the reducing amount of 
rolling, drawing speed, amount of fluctuation in rolling mill scroll wheel and scroll wheel spacing. 

It use xi(i = 1, 2, …, 24)to mark the known variables in sample space, and the components of xi 
mark as xij, where the evaluation of ‘j’ is defined as above. 

Using formula (1) to calculate the Euclidean distance between x(c) and xi: 
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According to above formula, it can calculate the distance between predictive samples x(c) and all 
known samples xi, which marked as di. Then, according to di, it picks an appropriate number of 
known samples xi from sample space to constitute training sample subspace P(c) (samples in which 
marked as x(c)

i) which aimed to the predictive samples x(c). 
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The Product Performance Prediction Based on 5-in & 1-out RBF Neural Network [2-8] 
The five inputs of RBF network are same respectively the tensile strength of the raw material σ0, the 
reducing amount of rolling △, drawing speed v, amount of fluctuation in scroll wheel I and scroll 
wheel spacing s, which denoted by xi (i = 1, 2, …, 5) in network. The output of RBF network is the 
tensile strength σb or the elongation δb of cold rolled ribbed steel bars, which denoted by yi (i = 1, 2) 
in network. 

Structure of mechanical performance prediction based on 5-in & 1-out RBF neural network 
model is shown in Fig. 1. In the Fig. 1, the y1 represents the tensile strength σb of cold rolled ribbed 
steel bars, and the y2 represents the elongation δb of the product. 

 

 

Fig. 1  Structure of 5-in & 1-out RBF network model 

 

Sampling 1, 3, 7, 18, 11, 23, 14 and 24 numbers for the test samples, the rest of the samples in 
whole variable space are regarded as known samples. It uses the 5-in & 1-out RBF network model 
to predict the mechanical performance parameters of the product. The experimental results and 
predictive results of the test samples mechanical performance are listed in Table 1. 

 
Table 1  Predictive results of product mechanical performance based on 5-in & 1-out RBF 

network with whole variable space 

Test 
samples 

x(c) 

Known 
sample 

variables 
x(c)

i 

Tensile strength σb Elongation δb 

Measured 
values 

Predictive 
values 

Relative 
errors 
(%) 

Measure 
values 

Predictive 
values 

Relative 
errors 
(%) 

1 

 
The 

other 
samples 
except 
the test 
samples 

5.348 5.3189 0.5439 10.8 10.8000 1.5793e-4 

3 5.987 5.9870 5.1223e-6 9.0 9.0009 0.0096 

7 5.921 5.9311 0.1701 9.3 9.2960 0.0435 

18 5.506 5.6069 1.8331 10.3 10.3234 0.2272 

11 6.571 6.5861 0.2296 8.1 8.1012 0.0152 

23 5.920 5.9200 3.7559e-4 8.4 8.4112 0.1332 

14 6.624 6.6240 1.6760e-4 7.2 7.2000 3.8935e-4 

24  6.273 6.2730 3.4308e-4 8.1 8.0948 0.0642 
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As it can be seen by the data in Table 1, all of the relative errors between the predictive values 
and the measured values are less than 2% through the 16 mechanical performance parameters of 
product which predicted by the 5-in & 1-out RBF network model with whole variable space, 
accounting for 100% of the total predictive parameters. The average relative error of the predictive 
results by this model is 0.204%, and the standard deviation is 0.443. Obviously, it can reach very 
high predictive accuracy which predicted by the 5-in & 1-out RBF network with whole variable 
space, when the network neuronal layer width coefficients is reasonable match with the network 
error. 

The data in Table 1 also reflect that the predictive effect of cold rolled steel elongation is superior 
to the predictive effect of tensile strength which based on 5-in & 1-out RBF network with whole 
variable space.  

The Product Performance Prediction Based on 5-in & 2-out RBF Neural Network [2-8] 
Structure of 5-in & 2-out RBF network model is shown in Fig. 2. In the Fig. 2, the y1 represents the 
tensile strength σb of cold rolled ribbed steel bars, and the y2 represents the elongation δb of the 
product. Still sampling 1, 3, 7, 18, 11, 23, 14 and 24 numbers for the test samples, the rest of the 
samples in whole variable space are regarded as known samples. It uses the 5-in & 2-out RBF 
network model to predict the mechanical performance parameters of the product. The experimental 
results and predictive results of the test samples mechanical performance parameters are listed in 
Table 2. 

 

Fig. 2  Structure of 5-in & 2-out RBF network model 

 
Table 2  Predictive results of product mechanical performance based on 5-in & 2-out RBF 

network with whole variable space 

Test 
samples 

x(c) 

Known 
sample 

variables 
x(c)

i 

Tensile strength σb Elongation δb 

Measured 
values 

Predictive 
values 

Relative 
errors 
(%) 

Measure 
values 

Predictive 
values 

Relative 
errors 
(%) 

1 
 

The other 
samples 

except the 
test 

samples 

5.348 5.2721 1.4191 10.8 10.6852 1.0633 
3 5.987 5.9853 0.0285 9.0 9.0003 0.0036 
7 5.921 5.9003 0.3497 9.3 9.2993 0.0074 
18 5.506 5.5029 0.0568 10.3 10.3073 0.0704 
11 6.571 6.3508 3.3506 8.1 8.1090 0.1105 
23 5.920 5.8712 0.8240 8.4 8.2024 2.3522 
14 6.624 6.5152 1.6421 7.2 7.2003 0.0036 
24  6.273 6.2776 0.0741 8.1 8.1018 0.0222 
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As it can be seen by the data in Table 2, there are 14 relative errors between the predictive values 
and the measured values are less than 2% through the 16 mechanical performance parameters of 
cold rolled ribbed steel bars which predicted by the 5-in & 2-out RBF neural network with whole 
variable space, accounting for 87.5% of the total predictive parameters. There are 16 relative errors 
are less than 5%, accounting for 100% of the total predictive parameters. The average relative error 
of the predictive results by this neural network model is 0.711%, and the standard deviation is 0.979. 
It also has very high predictive accuracy to the mechanical performance of cold rolled ribbed steel 
bars. But, from the whole point of view, its predictive effect is inferior to the effect which predicted 
by the 5-in & 1-out RBF neural network with whole variable space and the 5-in & 1-out RBF neural 
network with dividing variable space according to distance between technological variables. 

Conclusions 
Compared the predictive results of the 5-in & 1-out RBF network based on whole variable space 
listed in Table 1 with the predictive results of the 5-in & 2-out RBF network listed in Table 2, it is 
found that the former is 0.204% while the latter is 0.711% from the average relative error of 
predictive results, and the predictive accuracy of the former is higher than the latter’s. From the 
standard deviation of predictive results, the former is 0.443 while the latter is 0.979, and predictive 
stability of the former is higher too. So, from the whole point of view, just like the former predictive 
model, the predictive effect of the 5-in & 1-out RBF network based on whole variable space is more 
excellent.  
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