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Abstract. While fuzzy c-means is a popular soft clustering method, its effectiveness is largely limited to 
spherical clusters. By applying kernel tricks, the kernel fuzzy c-means algorithm attempts to address 
this problem by mapping data with nonlinear relationships to appropriate feature spaces. Kernel width 
is crucial for effective kernel clustering. Unfortunately, for most applications, it is not easy to find the 
right width. To design and manage the uncertainty for kernel width, we propose a type-2 kernelized 
fuzzy c-means algorithm (T2KFCM). We extend the type-1 fuzzy sets of membership to interval type-2 
fuzzy sets using two widths   and   which creates a footprint of uncertainty for the membership. 
Experiments on MR (Magnetic Resonance) image are given that compare  kernelized FCM (KFCM) 
with T2KFCM. The results show that T2KFCM compares favorably to both of the previous models.  

Introduction 
MR image plays a vital role in medical environments. The biggest challenge in MR image segmentation 
is the spatial intensity inhomogeneity induced by the radio-frequency coil[1]. Although the improving 
progress of fuzzy techniques, e.g.  KFCM has relieved this difficulty to a certain extent, the challenge 
still exists and becomes the kernel width   selection [2-4]. The performance of KFCM significantly 
depends on the choice of  . Hence, a good choice of  is crucial. Unfrotunately, it is unclear which 
kernels are more suitable for a particular task, because  is heavily influenced by prior knowledge about 
the data and  patterns that we expect to discover [5].  As a result of uncertain  , these KFCMs can not 
respond identically to different patients. They can not directly model all kinds of uncertainties in MR 
image segmentation. They usually produce over segmentation and also give unsatisfied results.  

Therefore, to address the above problems， a novel MR image segmentation algorithm is proposed 
by bringing type-2 fuzzy sets into KFCM. Some researchers have shown that the uncertainty in fuzzy 
systems can be captured with type-2 fuzzy sets because of their three-dimensional membership 
function. Type-2 membership functions are fuzzy and can appropriately model all kinds of uncertainties 
in real application problems. When clustering methods are combined with type-2 fuzzy sets, the 
prototype data can be clustered more properly and accurately[6-7]. We extend the type-1 membership 
values to interval type-2 membership values using two kernel widths  and   which create a footprint of 
uncertainty (FOU) of membership values. Then the interval T2KFCM is proposed by incorporating this 
interval type-2 fuzzy sets into KFCM. The experimental results are given to show the superiority of 
T2KFCM in comparison with  KFCM. 

The rest of this paper is organized as follow. Section II describes the KFCM with spatial 
information. Section III describes the interval T2KFCM with spatial information, Section IV provides  
an example showing the validity of our proposed medhod, and finally Section V concludes the work.  

KFCM with spatial informations 
There is a trend in machine learning community to construct a nonlinear version of a linear algorithm 
using the kernel method, e.g., Support Vector Machines (SVM), Kernel Fisher Discriminant (KFD) 
and Kernel Principal Component Analysis (KPCA) [8]. The philosophy of the 'kernel method' is that 
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every linear algorithm that only uses scalar products can be extended to the corresponding nonlinear 
version of this algorithm which is implicitly executed in a higher feature space through kernels. In one 
of our early works, a novel kernel-based fuzzy c-means algorithm with spatial constraints is derived 
from this philosophy [9]. The algorithm adopts a new kernel-induced distance metric to replace the 
original squared-norm one in FCM and utilizes the spatial information that is important in image 
clustering. It is shown to be more robust to noise and outlier than classical algorithms[10]. The 
modified objective function is given as follows:  
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where kN  stands for the set of neighbors that exist in a window around kx  and RN is the cardinality of 

kN . The parameter α  controls the effect of the penalty term. The relative importance of the 
regularizing term is inversely proportional to the signal-to-noise (SNR) ratio of the image. In other 
words, Lower SNR would require a higher value of the parameter α , and vice versa. ( , )K x y  is an 
inner product kernel function. We adopt the Gaussian RBF kernel function, i.e. , 

2 2( , ) exp( / 2 )K x y x y σ= − − , where σ is the kernel width. 
An iterative algorithm of minimizing Eqs. (1) can be derived by evaluating the centroids and 

membership functions that satisfy a zero gradient condition. A necessary condition for Eqs. (1) to be at 
a local minimum is 
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Interval type-2  KFCM with spatial informations 
With respect to the selection of the kernel function, to determine the parameters of the kernel function 
is more important.The kernelized fuzzy c-means with Gaussian RBF kernel is sensitive to the kernel 
width σ that greatly affects clustering segmentation. Kernel width is crucial for effective kernel 
clustering. If the clusters in a pattern set are of different size and density, the performance of KFCM 
may significantly differ depending on the choice of the kernel width. Hence, a good choice of σ  may 
be considered to be related to the distribution of the patterns for the pattern set. If we set σ  to a large 
value, the distance between patterns is shortened and the pattern will tend to be very similar. This may 
seem to be desirable for the sparse data, however, the estimated cluster centers will tend to be closer to 
each other.  If we set σ  to a mall value, the distance between patterns is widened and the pattern will 
tend to be very dissimilar. This may seem to be desirable for the dense data, however, the estimated 
cluster centers will tend to be more distant to each other. 

The value of σ   should reflect the radical scope of the input data. Unfortunately, for most  
applications, it is uneasy or impossible to precisely specify the appropriate fixed value of σ  to be used 
in KFCM because the unevenness of data is out of the reach of the strength of constant kernel width. 
However, if we can somehow simultaneously incorporate various values of σ , we may perhaps be able 
to design a desirable KFCM. Therefore, we should consider memberships for a pattern as uncertain 
instead of as certain in the KFCM. In other words, memberships for a pattern should not have to rely on 
a single specific kernel width σ  as in KFCM. We compute an interval of primary memberships for a 
pattern with two kernel widths 1σ and 2σ  which represent different radical scope. The establishment 
of the membership interval for a pattern set is to represent and manage the uncertainty which occurs by 
the use of  1σ and 2σ  in KFCM. Hence, we extend a pattern set to interval type-2 fuzzy sets. Interval 
type-2 kernel-based fuzzy c-means algorithm with spatial constraints (T2KFCM) is proposed. 
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T2KFCM  is extension of KFCM by using two kernel parameters  1σ  and 2σ  to make footprint of 
uncertainty, corresponding to upper and lower membership values of KFCM . The use of kernel width 
gives different objective functions to be minimized as follows: 
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Upper and lower degrees of membership, iju  and iju  are determined as follows: 

max( , )ij ij iju u w= ,   min( , )ij ij iju u w= .                                                                                                                     
Because each pattern has membership interval as the upper u and the lower u , each centroid of 

cluster is represented by the interval between Lv  and Rv .. 
After obtaining L

iv and R
iv , type-reduction is applied to get centroid of clusters as follows: 

( ) / 2L R
i i iv v v= +                                                                                                                          
The kernel width must adapt, to some extent, the space distribution. In dense areas the width is 

narrow, and in sparse areas the width is wide. Hence, we propose a method of computing the kernel 
widths 1σ and 2σ according to the distance between iuput vectors. Assume we have a data set S  with 
l patterns ( 1, , )jx j l= L and is divided into c  clusters ( 1, , )iv i c= L . Now, we describe how to 
compute 1σ  and 2σ . 
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The factors vf  controls the intervals in which the parameter varies: 1 0vfσ σ= , 2 0
1
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Because the Gaussian function has 99.7%  of its probability mass in the range of [ 3 , 3 ]µ σ µ σ− + , 
we constrain [1/ 6,1]vf ∈ . 

Experimental demonstrations 
In this section ,we describe some experimental results to compare the segmentation performance of the 
following algorithm, i.e. KFCM and T2KFCM.The experiment was perfomed on a real MR slice. In 
order to state our experimental results fairly, we run the T2KFCM algorithm with fifty iterations. All 
experiments were run on a computer with 2 GB memory, Microsoft Windows 8 and Matlab 2012b. 
Figs 1-3 show the original MR images and segmented results using  KFCM and T2KFCM algorithm. 

                      
Fig. 1 Original image       Fig.  2   KFCM result        Fig.  3   T2KFCM result 

 
From the above images, we can see that the proposed method gives good results and the regions are 

distinct. 
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Conclusions 
In this paper, we extended a type-1 fuzzy set to an interval type-2 fuzzy set by incorporating two 
different values of kernel width σ ( 1σ and 2σ ) and modified the procedure of KFCM. The purpose 
was to represent and manage the uncertainty which occurred in irregular MR image. Consequently, the 
management of uncertainty aids the cluster centers to converge to a more reasonable position in our 
proposed method. Center-updating and hard partition was modified in the KFCM by incorporating 
interval type-2 fuzzy sets into KFCM. From the approach, we can obtain improved segmentation 
results because the prototype data can be clustered more properly and accurately. An example for MR 
image illustrated the effectiveness of our proposed method by comparison with FCM and KFCM. 
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