Thermodynamic analysis and experimental study of TiB₂ coatings by CVD

Xiaoxiao Huang^a, Shuchen Sun^{b*}, Shuaidan Lu^c, Xiaoping Zhu^d, Kuanhe Li^e, Ganfeng Tu^f

School of Materials and Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China

^ahuangxiaoxiao@outlook.com, ^bsunsc@smm.neu.edu.cn, ^cimiage@163.com, ^dxiaopingzhu007@outlook.com, ^ekevinlee579@outlook.com, ^ftugf@smm.neu.edu.cn

Keywords: Thermodynamics; Titanium diboride; Chemical vapor deposition.

Abstract. The coatings of titanium dibordie (TiB₂) on a high purity graphite substrate by chemical vapor deposition (CVD) was studied by using a gas mixture of TiCl₄, BCl₃ and H₂. The reaction thermodynamics and the influences of TiCl₄: BCl₃ flow ratio on the growth rate of TiB₂ are analyzed by using HSC software, X-ray diffraction, FESEM and EDS. The experimental results indicate that TiCl₄ is according to the theory of gradual dechlorinating in this reaction and a large excess of H₂ and TiCl₄ can improve the growth rate of TiB₂.

Introduction

The titanium dibordie (TiB₂) is a very useful ceramic materials. Particularly outstanding properties are the high temperature hardness, erosion resistance and chemical inertness [1]. Because of these properties, titanium diboride has been used in many field, such as the Evaporator boat in high vacuum metal coatings, the protection of weapons and armored vehicle [2].

Chemical vapor deposition is a major method for TiB₂ coatings. Chemical vapor deposition is most suitable for the production of technically pure dense titanium diboride in arbitrary sizes and shapes. Moers [3] in 1931, first reported the successful conditions under which the material was formed. CVD of TiB₂ by the hydrogen reduction of the halides of titanium and boron. It was not until the 1960's, however, that any further study of the CVD of the procedure diboride was reported [4-8]. Thermodynamic and kinetic analyses of the transport reactions of TiB₂ were recently published by Besmann and Spear [9,10]. H. O. Pierson AND A. W. Mullendore [11] had been studied of the chemical vapor deposition of titanium diboride on graphite using the reaction of TiCl₄ with B₂H₆ in hydrogen atmosphere.

The CVD system used in this experimental is similar in design to those employed by other researchers[9,10]. The overall reaction of the vapor deposition of TiB2 is as follow [12]:

$$TiCl_4(g) + 2BCl_3(g) + 5H_2(g) = TiB2(s) + 10HCl(g)$$
 (1)

The condensed phase deposited on the high purity graphite substrate.

In this paper, thermodynamic of the reactions of TiB_2 are analyzed by HSC chemistry. Furthermore, the titanium diboride coatings are studied by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and EDS. Results of the growth rate relation in different $TiCl_4$: BCl_3 flow ratio are found. As will be shown, the under the same deposition temperature and vacuum degree, the growth rates and the morphologies depend to a large extent on the gas flow ratio of $TiCl_4$ and BCl_3 . The thickness of deposited coatings using different $TiCl_4$: BCl_3 flow ratio are revealed on the high purity graphite substrate, while XRD and microstructure will be presented.

Experimental

The schematic diagram of the experimental apparatus is illustrated in fig. 1. Heat was supplied by a 380-V power. The temperature of deposition chamber was controlled by infrared thermometer. In order to obtain uniform TiB₂ coatings, the graphite substrate, was rotated by a rotary motor in the

^{*}corresponding author: Shuchen Sun, Email: sunsc@smm.neu.edu.cn, Tel.: +86 024 83689195

deposition chamber. The TiCl₄ inlet lines are heated with heating tape to avoid the condensation of the reagent gases on the way. H₂, BCl₃ and TiCl₄ were mixed in a gas mixing chamber before importing the deposition chamber and there temperatures are lower than 773 K. Then the mixed gases entered the deposition chamber by airway. Most of exhaust gases are removed through a suction arrangement full of iron filing.

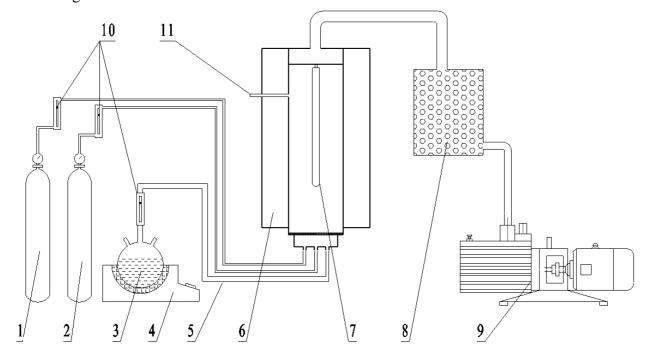


Fig. 1 Schematic diagram of the CVD reactor

(1) BCl3; (2) H2; (3) TiCl4; (4) temperature controller; (5) thermal insulation materials; (6) deposition chamber; (7) high purity graphite substrate; (8) iron filing; (9) vacuum pump; (10) gas flowmeter; (11) temperature control system.

In this experiment, the vacuum degree of deposition chamber was lower than 5×10 -6 mTorr. The deposition temperature was kept at 1223 K, Metering accuracy was maintained at $\pm1\%$. With these conditions, two different experiments were undertaken. The first group was deposited 3 hours with the molar ratio TiCl₄: BCl₃: H₂ =1: 2: 15, which the molar ratio of TiCl₄ to BCl₃ is the theoretical molar ratio. The second group was deposited 3 hours with the molar ratio TiCl₄: BCl₃: H₂ =2: 2: 15. Table 1 summarizes the field of deposition parameters.

Table 1 Field of deposition parameters

Parameters	Group 1	Group 2
Substrate	graphite	graphite
Deposition temperature	1223±1% [K]	1223±1% [K]
Vacuum degree	70 [mTorr]	70 [mTorr]
Temperature of H ₂	288±1% [K]	288.15±1% [K]
Pressure of H ₂	0.04 [MPa]	0.04 [MPa]
Flow rate of H ₂	$0.9 [m^3/h]$	$0.9 [m^3/h]$
Temperature of TiCl ₄	393±1% [K]	393±1% [K]
Pressure of TiCl ₄	0.06 [MPa]	0.06 [MPa]
Flow rate of TiCl ₄	$0.055 [m^3/h]$	$0.11 [m^3/h]$
Temperature of BCl ₃	303±1% [K]	303±1% [K]
Pressure of BCl ₃	0.06 [MPa]	0.06 [MPa]
Flow rate of BCl ₃	$0.085 [m^3/h]$	$0.085 [m^3/h]$

The structure and morphology of the Titanium diboride coatings were investigated by using X-ray diffraction, field emission scanning electron microscopy (FESEM) and EDS.

Results and discussion

Thermodynamic analysis. The changes in free energy of formation of Reactions are shown in Fig. 2 as a function of temperature. The Gibbs free-energy values of the reactants and products were obtained from the HSC Chemistry (Outokumpu Technology Corporation). These sources are generally accurate and satisfactory for the thermodynamic calculations of most CVD reactions, they are often revised and expanded. As shown in fig. 2, under the deposition temperature of reaction (1223K), there is a subchloride formed such as TiCl₃. But there is no TiCl₂ at that temperature (1223K) because of ΔG_f (TiCl₂) > 0 (reaction of TiCl₄ \rightarrow TiCl₂ or TiCl₃ \rightarrow TiCl₂). Therefore, the reaction sequence of the reaction in the furnace is TiCl₄ \rightarrow TiCl₃ \rightarrow TiB₂ and TiCl₄ \rightarrow TiB₂.

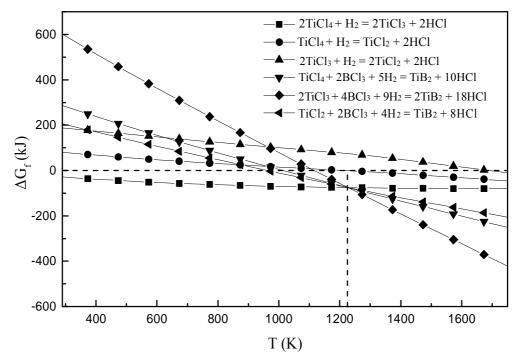


Fig. 2 Changes in free energy of formation

Structure and morphology of the deposit. From the orientation characteristics of the deposited layers investigated by X-ray diffractometry, oriented growth was found to be related to the TiCl₄/BCl₃ gas ratio in the vapor. Fig. 3 shows that the TiB₂ coatings deposited at different TiCl₄/BCl₃ gas ratio have almost the same XRD patterns. At the same time, figs. 3a and 3b are typical diffractometer traces of deposits from group 1 and group 2, showing that in the deposits from group 1 only (100) lattice planes are more developed than group 2. However, all the lattice planes of the deposits from group 2 are closer to the standard date from PDF2-2004 ICDD NO. 01-085-2083 of TiB₂.

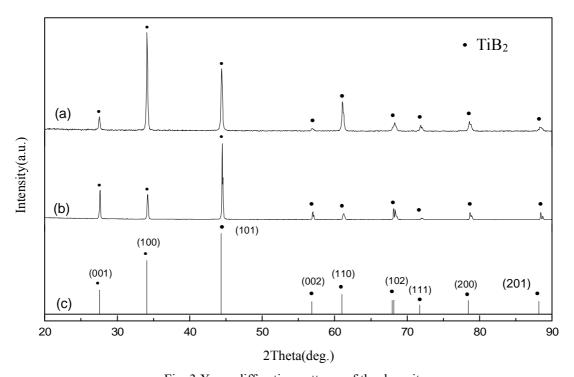


Fig. 3 X-ray diffraction patterns of the deposits. (a) At flow rate of TiCl₄ $0.055 m^3/h$; (b) At flow rate of TiCl₄ $0.11 m^3/h$; (c) The standard date from PDF2-2004 ICDD NO. 01-085-2083

Fig. 4 (a) and (b) display that SEM micrographs and EDS patterns of the surface of the coatings deposited at the condition of group 1. Fig. 4 (a) and (b) display that SEM micrographs and EDS patterns of the surface of the coatings deposited at the condition of group 2. It is compare fig. 4 (a) with (c) showing the morphology of granular structure of the coatings deposited at the condition of group 1 is more uneven than the group 2. The possible reasons are lack of TiCl₄ supply in the deposition chamber, which is caused by TiCl₄ is reduced by hydrogen producing TiCl₃ at the entrance of the mixed gases. The results of spot 1 and spot 2 in the table 2 evidence of a lack of titanium in the coatings deposited at the condition of group 1. The Ti/B ratio of spot 2 shown in table 2 approached to the stoichiometric value of TiB₂ coatings was deposited at the condition of group 2, because the sufficient TiCl₄ entered the deposition chamber for the reaction.

Table 2 The EDS analysis results of different regions of samples in fig. 4 (a) and (c)

Spot No.	Element	wt.[%]	at. [%]	Ti/B atom ratio
1	В	37.68	72.84	0.37
	Ti	62.32	27.16	
2	В	32.86	68.46	0.46
	Ti	67.14	31.54	

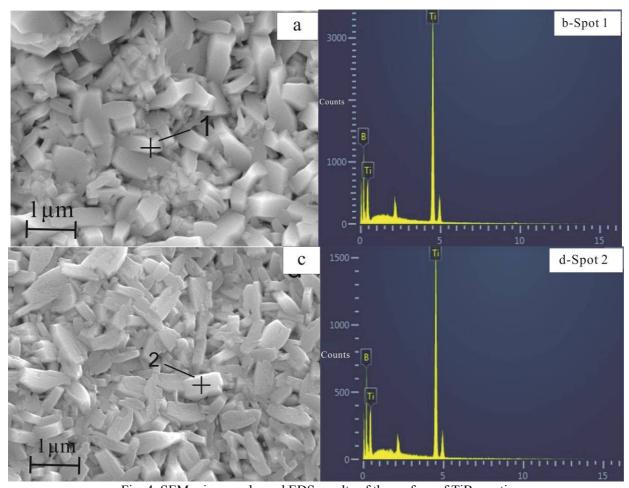


Fig. 4. SEM micrographs and EDS results of the surface of TiB_2 coatings. (a, b) and (c, d) are the microstructure of TiB_2 coatings deposited at flow rate of $TiCl4~0.055m^3/h$ and $0.11m^3/h$.

Fig. 5 (a) and (b) shows a typical cross section of a thick deposit obtained with condition of group 1 and group 2 for 3 hours by SEM micrographs. All deposition parameters are identical except the flow rate of TiCl₄ in the condition of group 1 and group 2. The rate of TiCl₄ in group 1 is $0.055m^3/h$, and Ti/B is 1: 2. While the rate of group 2 is $0.11 m^3/h$ and Ti/B is 1: 1. Obviously, the Ti/B ratio in the group 1 is theoretical ratio, content of Ti in the group 2 is one time more than theory amount. As show in fig. 5(a), the thickness of the coatings deposited at Ti/B = 1: 2 for 3 hour have reached to 17 micron. The fig. 5(b) show the thickness of the coatings deposited at Ti/B = 1: 1 for 3 hour have reached to 22 micron. Thus, this indicates that it is not all TiCl₄ conversion to TiB₂. This result found evidence of a subchloride formed such as TiCl₃.



Fig. 5 SEM micrographs of the section of TiB₂ coatings.

(a) and (b) are the microstructure of TiB₂ coatings deposited at flow rate of TiCl₄ 0.055m³/h and 0.11m³/h.

Conclusion

TiB₂ coatings could be deposited on the high purity graphite by CVD. Under the deposition temperature of reaction (1223K), the reaction sequence of the reaction in the furnace is $TiCl_4 \rightarrow TiCl_3 \rightarrow TiB_2$ and $TiCl_4 \rightarrow TiB_2$. These coatings have basically uniform structure and composition with the condition of Ti: B = 1: 2 and Ti: B = 1: 1. But the deposition has higher growth ratio, when the flow ratio of TiCl₄ is the double of the theory amount.

References

- [1] H.O. Pierson, E. Randich, Titanium diboride coatings and their interaction with the substrates, Thin Solid Films 54 (1978) 119-128.
- [2] Xuejia Zheng. Metal borides and boron-containing alloy In Chinese, first ed., Chemical industry press, Beijing, 2012.
- [3] T.M. Besmann, K.E. Spear, Morphology of chemical vapor deposited titanium diboride, J. Cryst. Growth. 31(1975) 60-65.
- [4] C. Pfohl, A. Bulak, K.T. Rie, Development of titanium diboride coatings deposited by PACVD, Sure. Coat. Tech. 131(2000) 141-146.
- [5] S.H. Lee, K.H. Nam, S.C. Hong, J.J. Lee, Low temperature deposition of TiB₂ by inductively coupled plasma assisted CVD, Sure. Coat. Tech. 201(2007) 5211-5215.
- [6] R.J. Diefendorf, L. Mazlout, Dynamic model for the CVD processing of TiB₂ fibers, Compos. Sci. Technol. 51(1994) 181-191.
- [7] N. Schalk, J. Keckes, C. Czettl, M. Burghammer, M. Penoy, C. Michotte, C. Mitterer, Investigation of the origin of compressive residual stress in CVD TiB₂ hard coatings using synchrotron X-ray nanodiffraction, Sure. Coat. Tech. 258(2014) 121-126.
- [8] S. Shimada, M. Takahashi, H. Kiyono, J. Tsujino, Coatings and microstructures of monolithic TiB₂ films and double layer and composite TiCN/TiB₂ films from alkoxide solutions by thermal plasma CVD, Thin Solid Films 516(2008) 6616-6621.
- [9] T.M. Besmannandk. E. Spear, Analysis of the chemical vapor deposition of titanium diboride I. Equilibrium thermodynamic analysis, J. Electrochem. Soc. 124(1977) 786-790.
- [10] T.M. Besmannandk. E. Spear, Analysis of the chemical vapor deposition of titanium diboride II. Modeling the kinetics of deposition, J. Electrochem. Soc. 124(1977) 790-797.
- [11] H.O. Pierson, A.W. Mullendore, The chemical vapor deposition of TiB₂ from diborane, Thin Solid Films 72(1980) 511-516.
- [12] S. Lu, S. Sun, X. Huang, G. Tu, X. Zhu, K. Li, Deposition behavior of TiB2 by microwave heating chemical vapor deposition (CVD), Green Processing and Synthesis 4 (2015) 203-208.