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Abstract. In this paper, the analysis of various higher-order shear deformation theories for the free 
vibration of laminated composite plates is presented. A Navier-type analytical method was used to 
solve the governing differential equations. Natural frequencies of simply supported laminated 
composite plates are calculated. The present results are compared with the available published results. 

Introduction  
The use of laminated composite has generally increased in weight sensitive applications such as 

aerospace and automotive structures due to their low maintenance cost and high strength-to-weight 
ratio. The vibration problem of laminated composite structures has attracted the attention of many 
researchers. 

Sahoo and Singh [1] proposed a new trigonometric zigzag theory for the analysis of laminated 
composite and sandwich plates. Ngo-Cong et al. [2] presented a new effective radial basis function 
(RBF) collocation technique for the free vibration analysis of laminated composite plates using the first 
order shear deformation theory (FSDT). 

In this paper, the theories of Touratier [3], Mantari [4], Karama [5], Levinson [6] are used to study 
the free vibration behavior of laminated composite plates. The governing differential equations are 
solved by a navier-type analytical method. The present results are compared with the available 
published results. 

Governing equations and boundary conditions 
Considering a plate of uniform thickness h. According to the higher order shear deformation theory, 

the displacement field is given as: 
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The transverse shear function in Touratier [3] is: 
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The transverse shear function in Mantari [4] is: 
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The transverse shear function in Karama [5] is: 
22( / )( ) z hf z ze−=                                                                                                           (4) 
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The transverse shear function in Levinson [6] is: 
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By substituting the displacement field into the strain–displacement relationships, the following strain 
components can be write as: 
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By the principle of virtual displacements, the Euler–Lagrange equations can be: 
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Navier methods 
The simply supported boundary conditions and the governing equations are satisfied by the 

following displacement functions.  
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where m
a
π

α =  ,  n
b
π

β = , ω  is the natural circular frequency. Substituting Eq. (8) into Eq. (7) and 

collecting the coefficients, we can obtain the following equation: 
                                  { } { } { } { }2[ ] 0 , , , , ,T
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The natural circular frequency ω  can be obtained by solving the eigenvalue equations (9). 

Numerical examples 
Here all layers of the laminated plates are the same material properties, the lamina properties are 

assumed to be:  
1
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The dimensionless natural frequencies are given by 
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Table 1 lists the non-dimensional fundamental frequency of the simply supported laminate plate of 
various modulus ratios of E1/E2 and side-to-thickness ratio a/h. It is found that the results are in very 
close agreement with the values of Reddy [7] and Liew [8] based on the FSDT. 

Figs. 1 show the non-dimensional fundamental frequency of the simply supported square plate . 
 
Table 1 The non-dimensional fundamental frequency of the simply supported square plate 
(0°/90°/90°/0°) 

a/h Method E1/ E2    
10 20 30 40 

5 Liew[7]  8.299 9.568 10.327 10.855 
 P. Touratier  8.274 9.530 10.277 10.793 
 P. Mantari 8.326 9.617 10.387 10.920 
 P. Karama 8.281 9.542 10.292 10.811 
 P. Levinson 8.272 9.526 10.272 10.787 
10 Reddy[8]  9.853 12.383 13.892 15.143 
 P. Touratier  9.830 12.221 13.868 15.113 
 P. Mantari 9.864 12.270 13.945 15.214 
 P. Karama 9.845 12.228 13.879 15.128 
 P. Levinson 9.844 12.218 13.864 15.107 

 

 

Fig.1 The non-dimensional fundamental frequency of the simply supported pate 
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Conclusions 
In this paper, the analysis of various higher-order shear deformation theories for the free vibration of 

laminated composite plates is presented. A Navier-type analytical method was used to solve the 
governing differential equations. Natural frequencies of simply supported laminated composite plates 
are calculated. The results show that Mantari model produces the biggest results. 
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