
Adaptive Middleware For The IMA

Libin Cao *

School of Reliability and Systems Engineering
Bei Hang University

BeiJing,China

290551289@qq.com

Xing Sun

School of Reliability and Systems Engineering
Bei Hang University

BeiJing,China

foolstudent@live.cn

* Corresponding Author

Abstract—With the three generations of development,

avionics systems has tended to miniaturization, integration,

and intelligence development. IMA is integrated and
distributed that use electronic systems for commercial

aviation COTS software (DRE). IMA is integrated and

complex logic structure that requires the use of middleware

technology to shield security and reliability issues arising

from cross-platform. By studying adaptive resource

management proposed for integrated avionics system we

features adaptive cross-platform middleware strategy.

Keywords-IMA; Middleware; Resource management; QoS.

I. INTRODUCTION

Avionics system after three generations of
development, which has tended to miniaturization,
integration, intelligence development. The main features of
the structure is the use of COTS components and
distributed solutions and the entire avionics system
integrated into a distributed system (DRE)[1]. From a
software perspective, since the system functions gradually
changed from the original hardware to software-based,
hardware, which is supplemented by the calculation mode.
Meanwhile, the complexity of the software has also
brought such as cost, development time, security and many
other issues. Therefore, in order to address the complexity
of IMA, IMA need reduce development effort of software.
Middleware technologies have been used to naturally IMA
software designs, such as CORBA and TAO. However,
with the development of avionics, traditional middleware
is increasingly unable to meet the development of needs,
mainly due to: (1) Uncertainty hardly support the load
management. (2) real-time transplant too much difficulty
(3) System function and the degree of coupling QoS too.
To this end, traditional middleware needs to be improved
and refined to meet the needs of a new generation of IMA,
IMA change the current system software development too
difficult dilemma.

The middleware architecture is general, making it
possible to implement the middleware in any operating
environment (e.g. with CORBA ORBs, Java RMI, etc.).A
prototype of the architecture has been implemented for
evaluation purposes in Java, but the interfaces of the
components can be translated directly to CORBA IDL. In
recent years, a variety of QoS architectures and tools have
been developed [2]. Most of them are specifically for
multimedia and telecommunications applications [9, 10,
14]. They typically allow the specification and control of
application-specific quality parameters (e.g. rate, latency
and jitter). Most architectures provide services to specify

quality parameters of a single task (e.g., a transmission
task) in an application and mechanisms for managing a
single resource (e.g., network bandwidth). Other QoS
management frameworks support the characterization of
pre-defined fixed end-toend quality levels and provide
services to request fixed quality levels or resource
allocation from the environment [14, 15]. In some
environments (e.g. CORBA),the same task can have
multiple implementations specified in the task description
[16]; these implementations may limit the available QoS
options. Some works (e.g.,[13, 14]) focus on QoS
management at the end-points of an application. In contrast,
the networking community has been concerned primarily
with providing qualities such as bandwidth, fairness,
latency, etc. to flows on networks [2, 3, 10] but seldom
considers the end-toend tradeoffs at the application level.
The architecture described here is designed to facilitate the
specification of quality of services of diverse application
components and the specification and management of
quality levels of individual components within a complex
application in order to maintain the end-to-end quality.
Components use results produced by each other and hence
are dependent. Quality levels of dependent components are
dependent. The negotiation algorithms provided in this
architecture not only determine amounts of resource
allocation but also the quality levels of individual
components within an end-to-end application.

II. MIDDLEWARE

A. Definition of middleware

The so-called middleware, is located on a software

layer between the operating system and application

software, which provides services to a variety of
application software, the application process can be

different in the case of masked platform differences,

communicate with each other through a network, usually

in actual use, put together to form a group of middleware
integration platform (including the development of

platforms and operating platform), which must have a

communication middleware complete the communication

between the middleware. In this sense, the middleware
must have the following characteristics[2]:

1) Standard protocols and interfaces.

2) Distributed computing, to provide network,

hardware, operating system transparency.

3) To meet the needs of a large number of applications.

4) Be able to run a variety of hardware and operating

system platforms.

International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015)

© 2015. The authors - Published by Atlantis Press 1819

B. Adaptive Middleware

Adaptive middleware, by definition refers to adaptive

middleware inherent characteristics, can change with

changes in the external environment and internal
implementation of the software for the adaptive

configuration and punch configurations, including the

structure and function of the dynamic behavior adjustment

to meet changing needs, so as to achieve the middleware,
"the transformation strain" features. Adaptive middleware

has the same essential characteristics of traditional

middleware, provides a unified programming model for

distributed application development, and other details of
the underlying heterogeneity shield development and

application platform. Except that: adaptive middleware is

an open, dynamic, reconfigurable, intelligent and

reliability characteristics[3].

III. ADAPTIVE MANAGEMENT STRATEGY

IMA is a distributed real-time environment, the need

for many different types of resources for effective

management, in order to complete the distributed real-
time applications to share the different tasks under the

distributed real-time environment, and in distributed real-

time systems require multiple different distributed real-

time applications, including hard real-time distributed
applications and soft real-time distributed applications as

non-real-time distributed applications. These real-time

distributed application not only different, but have

different structures, from periodic independent
applications, multimedia streaming applications, parallel

pipeline applications to the event-driven model of

interactive applications. In addition, these applications are

required to implement distributed QoS control distributed
real-time applications and QoS guarantees[4]. Therefore,

a new generation of real-time middleware goal is to be

able to achieve unified management of resources with

adaptive mechanism resource management model, and the
ability to adapt to highly variable resource management

needs and flexible real-time request processing. Adaptive

resource management middleware, real-time distributed

system must be able to promptly respond to real-time
events, but also provides proactive adaptive behavior.

ARTs-ARM adaptive mechanism based on several trigger

events:

 New tasks and resource allocation request arrives.

 Distributed Application End Task.

 The current distributed application QoS request
changes.

 The current distributed applications operating
quality change.

 And the current external environment of
distributed applications change.

Based on these types of distributed real-time
applications, trigger events, in ARTs-ARM are specified in
two different adaptive management strategies[5]:

 External adaptive management strategy: that
adaptive resource management strategies affect the

interaction between distributed real-time
applications

 Internal adaptive management strategies: a
distributed real-time applications refers to internal
adaptive resources management strategy.

Based on these two adaptive resource management
strategies for different situations, ARTs-ARM define
different QoS adaptation mechanism. QoS control of
distributed real-time computing tasks in real-time
environment, a direct reflection of the real-time system
operability. Because of a large number of real-time
interactions between applications, increasing the difficulty
of QoS control. ARTs-ARM system model QoS quantified
control for defining a region for the application of
acceptable QoS area. In ARTs-ARM achieve a
multidimensional QoS representation, an application for
each dimension specified acceptable range [Qmin, Qmax]
used as control parameters QoS application. Thus, the
scope of the multi-dimensional QoS defines a QoS area,
this QoS model, strengthen the resource control, the
realization of QoS quantitative management, and make
resource management more flexible.

Figure 1. QoS requested region

Figure 2. QoS feasible region.

Q

QoS feasible region

Q

QoS requested region

1820

Figure 3. QoS Expand and Compression

Figure 4. QoS feasible region point

In Fig. 1,2,.3 and 4,the form of two-dimensional

coordinates of a general schematic representation of

distributed applications and related changes in QoS area,
region point represents the current execution point when

QoS distributed application execution when the context

changes Implementation of vertical and horizontal

coordinates of the point indicates that the associated QoS
value. When the distributed application execution point is

called the current QoS current operating point[6].

IV. CONSTRUCTION OF IMA-ARM SYSTEM

A. IMA-ARM design requirements

On your CD, please indicate the format and word

processor used. Please also provide your phone number,
fax number and e mail address for rapid communication

with the publisher. Please always send your CD along

with a hard copy that must match the CD’s content

exactly. If you follow the foregoing, your paper will
conform to the requirements of the publisher and facilitate

a problem-free publication process.

In order to facilitate building a reusable and more

robust application system for QoS guarantee strategy and
mechanism of independent on functional component,

through selection, customization and dynamic binding

policy and mechanism for application system to provide

performance guarantees, we will rtarmm design into a Tao

middleware services based on, the rtarmm can for

application of each functional component provide flexible
QoS guarantee service, and independent of the realization

of the functional components. Therefore, the design of

RTARMM[7] considers the following factors:

 Adaptive target: that is, from which aspect to
provide the system with QoS adaptive QoS to
ensure that, such as: the task of real-time, network
transmission delay, streaming media continuity,
etc.. In this paper, the adaptive goal is to achieve
the goal of real-time, through the dynamic
adjustment of CPU resources to achieve.

 Adaptive strategy: for the system provides
adaptive QoS ensure adopted methods and means,
such as: task redistribution strategy, feedback
control strategy, these strategies tend to have
universal, applicable to multiple adaptive target.

 Adaptive mechanism: the basic measures for the
realization of adaptive strategies, such as
preemption mechanism, priority based allocation
mechanism, etc.

 System status information: that is, the RTARMM
in the CPU resource management system
parameters, such as: CPU utilization, real-time
task of the deadline miss rate, etc.

 Adaptive strategy: from the algorithm and
programming to achieve a specific adaptive
strategy.

B. System structure and algorithm of QoS negotiation[8]

The architecture of the QoS negotiation is shown in Fig.

5 The work of the QoS monitor is to collect hardware

information and convert them into the standard amount of
path and application, the corresponding application load

and resource usage information.

The function of the analyzer is to monitor the

occurrence of QoS conflicts. The development trend of
QoS, load and resource utilization is calculated.[9] The

cause of QoS conflict is determined by analyzing the

scene. Negotiations to complete the two functions: first, it

can choose the methods to solve the conflict of QoS, then
put forward resource to the resource manager's

request;secondly, when the Explorer is unable to perform

the resource allocation scheme, negotiations can get the

possibility of the highest QoS scheme. Resource
allocation scheme with the highest QoS level can be

determined by negotiation in the case of resource

availability constraints.

Resource manager obtains the current network and
computing resources from the host monitor. Then map

different resource requirements to the available resources.

Explorer to find the resources to meet the needs. If the

resource is available, the resource manager predicts the
future of QoS. Finally, the resource manager performs this

heavy assignment (by program control and start and stop

based on the predicted QoS values. This new selection

technique can ensure that the system obtains a higher QoS
level. QoS manager and explorer, respectively, to

maintain QoS and management resources.[10] Whenever

there is a conflict between the acquisition of sufficient

resources and the guarantee of high QoS, the QoS

Q

QoS feasible region

Q

QoS feasible region

Expand

Compression

1821

manager and explorer will negotiate a solution. To

accomplish this work, both algorithms and
communication protocols are required. Flow diagram of

Fig. 6. describes the details of the algorithm and protocol.

If the resource manager does not execute the program,

the QoS manager sends a negotiation message. QoS
manager sends a request to the resource manager, or the

next stage of the negotiation. The response of the resource

manager to the QoS manager is a process of reducing the

expected value of QoS. The QoS manager will evaluate
whether the QoS's improvement value exceeds the limit

value. If the QoS value of the improved value is achieved,

the QoS manager sends a confirmation message to the

resource manager.

Figure 5. QoS negotiation system structure

V. CONCLUSIONS

Papers resources the IMA system dynamic service

characteristics that are attributed to an adaptive distributed
systems. IMA is real-time adaptive resource management

mechanisms through resource management strategies

ARTs-ARM introduced its location in the system,

architecture, and focuses on the resources of its unified
management strategy which is based on the distributed

application environment, dynamic self-adaptive

management mechanisms and associated resource

allocation strategies. In addition, adaptive middleware
software provides feedback to control task redistribution

and support two adaptive strategies for the realization of

uncertain load management, more over complete the
mission complex aviation environment. By achieving real-

time portable and flexibility to change QoS, we ensure the

mechanism that provides a theoretical and technical

support.

REFERENCES

[1] Zhang Wei. “common open software architecture on distributed

avionics system” [D] Chengdu: University of Electronic Science
and Technology, 2013.

[2] Juan Lopez Rubio."Service Oriented Architecture for
Embedded(Avionics)"[D].UPC,2011.

[3] Carlos O'Ryan and Douglas C.Schmidt."The Design and

Performance of a Real-time CORBA ORB
Endsystem"[J].University of California, Irvine Irvine, 2000.

[4] Manuel-Díaz,Daniel Garrido ,Luis Llopis,
JoséM.Troya,"Designing distributed software with RT-CORBA

and SDL"[C]Computer Standards&Interfaces, 2009.

[5] Barbara Han, "Real-time distributed systems Dynamic Scheduling
Service - Design and implementation of CORBA environment" [D]

Chengdu: University of Electronic Science and Technology, 2004.

[6] Gao Hui-Sheng, Han Yong, He Yu-Jun, "Real-time CORBA in

information collection system application" [J] Computer
Applications and Software Volume 31, No. 6, June 2014.

[7] Yeh, Y. C., “Triple-Triple Redundant 777 Primary Flight

Computer,” in Proc. 1996 IEEE Aerospace Applications
Conference, v. 1, New York, N.Y, February 1996.

[8] Sha, L., “Using Simplicity to Control Complexity,” IEEE Software
18(4) , July/August 2001.

[9] Brower, R. W., “Lockheed F-22 Raptor,” in The Avionics

Handbook, C. Spitzer, ed., Boca Raton, FL, CRC Press, 2001

[10] Moore, J., “Advanced Distributed Architectures,” in The Avionics

Handbook, C. Spitzer, ed.,Boca Raton, FL, CRC Press, 2001.

[11] Klara Nahrstedt and Ralf Steinmetz. Resource Management in
Networked Multimedia Systems. Computer, 28(5):52–63, May

1995.

[12] Object Management Group (OMG). Object Services:

 Common Object Services Specification. Technical report,
OMG, 1997.

[13] D.Schmidt, A. Gokhale, T. Harrison, and G. Parulkar. A High

Performance End System Architecture for Real-Time CORBA.
IEEE Communications Magazine, 35(2):72–78, 1997.

[14] W. Feng and Jane Liu. Algorithms for Scheduling Real-Time
Tasks with Input Error and End-to-End Deadlines. IEEE

Transactions on Software Enineering, 23(2):93–106, February
1997.

[15] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott Shenker, and

Daniel Zappala. RSVP: A New Resource ReSerVation Protocol.
IEEE Network,7(5):8–18, September 1993.

Diagnostic
apparatus

Analyzer Resource
Manager

QoS
monitor

Application
Start stop
Guardian
process

Program
controller

Negotiation C o nf lic t in fo rm at io n
QoS / lo a d f o re ca s ting

Conflict
Reas o n

Re s ou rce d e ma nd / res p o n

He a vy a ss ig n me n t o pe ra t i

P ro ce ss c on trol inf o rma tio n

P roc ess
C o ntro l Time stamp

QoS state
Re s ou rce u sag e

1822

