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Abstract. A single player strategy game  is studied in this paper. We are interested in algorithms 
which, given integer n, generate the corresponding move sequences to reach the final state of the 
game with smallest number of steps. In this paper we present an optimal algorithm to generate an 
optimal move sequence of the game consisting of  n black checkers and  n white checkers, and finally, 
we present an explicit solution for the general game of size n.  

Introduction 
Combinatorial games often lead to interesting, clean problems in algorithms and complexity 

theory. Many classic games are known to be computationally intractable. Solving a puzzle is often a 
challenge task like solving a research problem. You must have a right cleverness to see the problem 
from a right angle, and then apply that idea carefully until a solution is found. 

In this paper we study a single player game called moving checkers. The game is similar to the 
Moving Coins puzzle [2,3], which is played by re-arranging one configuration of unit disks in the 
plane into another configuration by a sequence of moves, each repositioning a coin in an empty 
position that touches at least two other coins. In our moving checkers game, there are n  black 
checkers and n  white checkers put on a table from left to right in a row. The 22 +n  positions of the 
row are numbered 1,20,1, −n . Initially, the n  black checkers are put on the position 1,0,1, −n , 
and the n  white checkers are put on the position 1,21,, −− nnn  . The rightmost two positions n2  
and 12 +n  are vacant. In the final state of the game, the positions of even number n,22,4,  are 
occupied by white checkers, and the positions of odd number 1,23,5, +n  are occupied by black 
checkers, leaving the two positions 0  and 1 vacant. For easy to say, we call the number n  the size of 
the game even though we have n2  checkers. 

A move of the game consists of shifting two adjacent checkers, keeping their order, into the 
current two vacant positions. The goal of the game is to make a smallest number of moves to reach the 
final state of the game. 

We are interested in algorithms which, given integer n , generate the corresponding move 
sequences to reach the final state of the game with smallest number of steps. In this paper we present 
an optimal algorithm to generate an optimal move sequence of the game consisting of n  black 
checkers and n  white checkers. 

This paper is structured as follows. 
In the following 4 sections we describe the algorithms and our computational experience with the 

algorithms for generating optimal move sequence of the general game consisting of n  black checkers 
and n  white checkers. In section 2, we describe a new variant tree search based algorithm for 
generating all optimal solutions for the moving checkers games of small size. A linear time recursive 
construction algorithm is proposed in section 3. Based on the recursive algorithm proposed in section 
3, an explicit solution for the optimal move sequence of the general game is presented in section 4. 
Some concluding remarks are in section 5. 
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A Backtracking Algorithm  
It is not difficult to verify the following facts on the minimum number of steps needed to play the 

game. 
 
Theorem 1  For the general game consisting of n  black checkers and n  white checkers, it needs 

at least n  steps to reach the final state of the game from its initial state.  
Proof. In a row of checkers of the game, if two adjacent checkers have different colors, the two 

checkers are called an inversion pairs. For example, in the initial state of the game consisting of n  
black checkers and n  white checkers, there is only one inversion pairs, while in the final state of the 
game, there are total 12 −n  inversion pairs. 

It is readily to see that the inversion pairs are increased by 22 −n  from initial state to the final 
state of the game. In the first step of move, at most one inversion pairs can be added and in the 
subsequent moves at most two inversion pairs can be added in each step. If the final state is reached 
after m  steps, then at most 12 −m  inversion pairs are added. Therefore, we have, 2212 −≥− nm  
and so 1/2−≥ nm . Since m  is an integer, we have nm ≥ . 

In other words, it needs at least n  steps to reach the final state of the game from its initial state. ■ 
 
According to Theorem 1, if we can find a move sequence to reach the final state of the game with 

n  steps, then the sequence will be an optimal move sequence, since no move sequence can reach the 
final state of the game in less than n  steps. In order to study the structures of the optimal solutions for 
the general moving checkers game, we first present a backtracking algorithm [1,5,6] to generate all 
optimal solutions of the games with small size. 

 

 
 
In the algorithm described above, the parameter i  is current number of steps and the parameter e  

is the left position of current vacant. The current solution is stored in array x . For ni ,1,2,=  , the 
move of step i  is stored in 1][ −ix . This means that we move the adjacent pair of checkers located at 
positions 1][ −ix  and 11][ +−ix  to the current vacant positions and leaving the positions 1][ −ix  
and 11][ +−ix  the new vacant positions. A recursive function call )1,2( nBacktrack  will generate all 
optimal solutions which move checkers from initial state to final state in n  steps. 

It is not difficult to generate all optimal solutions of the game with small size by the backtracking 
algorithm described above. 

For the cases of 3≤n , there are no solutions found. The unique optimal solutions found for the 
cases of 4,5,6=n  are {1,4,7,0}, }{1,7,4,9,0  and 1,0}{1,7,3,8,1  respectively. There are 2 optimal 
solutions 6,13,0}{1,10,4,9,  and ,6,9,0}{1,10,4,13  for the case of 7=n . For the case of 8,9=n , 
there are total 16 and 32 optimal solutions found respectively. 
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A Linear Time Construction Algorithm 
The backtracking algorithm described in the previous section can produce all optimal solutions for 

the game with fixed size n . It works only for small size n . If we concentrate to find one optimal 
solution for the game, we can do better. In this section, we will present a linear time construction 
algorithm which can produce an optimal solution in linear time for very large size n . The 
Decrease-and-Conquer strategy [4,7] for algorithm design is exploited to design our new algorithm. 

For the cases of 7≤n , we can apply the solution found in the previous section directly. For the 
cases of 8≥n , we can find one optimal solution for the game recursively as follows. 

It has been known that the optimal solution for the game of size n  consists of n  steps. 
In the new construction algorithm, first 2 steps are constructed explicitly to make checkers located 

at the positions 3,24,5, −n  exactly the same as the initial state of a game of size 4−n . 
Then, in the steps 2,3, −n , the algorithm is applied recursively to the game of size 4−n , in 

which the checkers are located at the positions 3,24,5, −n . 
Finally, the last 2 steps are constructed explicitly to make a whole solution. 
Now we can describe the new construction algorithm Move  as follows. 
In the algorithm described above, the parameters first  and k  describe the initial state of the 

sub-game of size k  starting at position first . The current step of the game is stored in a global 
variable step . The array x  is used to store the optimal solution of the game. For example, a function 
call )0,4(Move  will return an optimal solution for the game of size 4 by the array {1,4,7,0}=x . 

 
 
 

 
 
The correctness of the algorithm can be proved readily by induction. Now we consider the time 

complexity for the whole algorithm. Suppose the time required by the algorithm for the game of size 
n  be )(nT . The first 2 moves and the last 2 moves of the algorithm Move  cost (1)O  time. In the 
middle part of the algorithm, a recursive call is applied to a sub-game of size 4−n  requiring 

4)( −nT  time. For the games of small size of 8<n , the time costs of the algorithm are obviously 
(1)O . Therefore, the following recurrence holds for )(nT .  
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



≥+− 8(1)4)(

8<(1)
=)( nOnT

nO
nT                     (1) 

The solution of this recurrence is obviously )(=)( nOnT . In other words, the algorithm Move  for 
general game of size n  requires )(nO  time. The space used by the algorithm is obviously )(nO . 

 
Theorem 2  The algorithm Move  for solving the general moving checkers game of size n  

requires )(nO  time and )(nO  space.  

The Explicit Solution of the Problem 
The optimal solution found by the algorithm Move  is presented by a vector x . For ni ,1,2,=  , 

the step i  of the optimal move sequence is given by 1][ −ix . This means that the adjacent pair of 
checkers located at positions 1][ −ix  and 11][ +−ix  will be moved in step i  to the current vacant 
positions and leaving the positions 1][ −ix  and 11][ +−ix  the new vacant positions. This can also be 
viewed that x  is a function of i . In this section we will discuss the explicit expression of function x . 

For the small size cases of 4,5,6,7=n , the optimal solutions of the game can be listed as a small 
two dimensional array d  as follows. 

 
 
 

Table  1: Small two dimensional array d  
 

 
 
For the games of size 4,5,6,7=n , the step nii ≤≤,1  of the optimal solution can be expressed as 

),( ind . For the cases of sub-games of size 4,5,6,7=tn − , starting at position t , the corresponding 
step tnjj −≤≤,1  of the optimal solution can be expressed as ),( jtndt −+ . For the general cases 
of sub-games of size n , starting at position t , if the corresponding step njj ≤≤,1  of the optimal 
solution is denoted as ),( jtm , then for the game of size n , the optimal move niix ≤≤−1],1[  must 
be niim ≤≤),1(0, . 

According to the algorithm Move  presented in previous section, the function ),( jtm  can be 
computed as follows. 
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If i  or in −  is a constant, then )(0,=1][ imix −  can be computed in (1)O  time by the formula 
given above. In other cases, if both i  and in −  are in )(nO , then the time costs to compute )(0,im  
by the formula given above must be )(nO . However, we can reduce the formula further to an explicit 
formula to compute each of niimix ≤≤− ),1(0,=1][  in (1)O  time as follows. 

Theorem 3  The optimal solution niimix ≤≤− ),1(0,=1][  found by the algorithm Move  for 
solving the general moving checkers game of size n  can be expressed explicitly as follows. 
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 where, 1/4= −nk , 4mod= nr .  
 
 Proof. From the construction steps of the algorithm Move , the optimal move steps can be divided 

into three parts, the first 2 moves, recursive moves and the last 2 moves. Thereby the n  steps of the 
optimal move sequence niix ≤≤−1],1[  generated by the algorithm Move  can also be divided into 
thee parts accordingly. These three parts are the first part ki 21 ≤≤ , the second part 

32<<2 ++ rkik  and the third part nirk ≤≤++ 32 , respectively, where 1/4= −nk , 
4mod= nr . 

Every move step nii ≤≤,1 , corresponds to a sub-game starting at position t , and this starting 
position t  can also be determined by the value of i . 

In the first part of the optimal move steps, the moves are generated by the first 2 moves of the 
algorithm Move . It is not difficult to see that if i  is odd then 1)2(= −it  otherwise 2)2(= −it . In 
this case, according to formula (2), if i  is odd then 12=11)2(=1=)(0, −+−+ iitim , otherwise, 

)2(=42)2(2=42=)(0, inintnim −−−−−− . 
Similarly, in the third part of the optimal move steps, the moves are generated by the last 2 moves 

of the algorithm Move . In this case, the starting position t  of the sub-game corresponding to step i  
can be determined by the value of in − . It is not difficult to see that if in −  is odd then 

1)2(= −− int  otherwise )2(= int − . It can also be derived by formula (2) that, if in −  is odd then 
12=11)2(2=12=)(0, +−−−−−− iinntnim , otherwise, )2(==)(0, intim − . 

For the second part of the optimal move steps, the starting position t  of the sub-game 
corresponding to step i  is obviously k4 . There are k2  steps in the first part of the optimal move 
steps are generated before this part and thus the step i  corresponds to the step kij 2= −  of the 
sub-game. It follows from  

44=/44= +++ rkrnn  that 4=4= +−− rkntn . 
 It can now be derived by formula (2) that )24,(4=),(=)(0, kirdkjtndtim −++−+ . 
The proof is completed. ■ 
It is obvious that the optimal move sequence niix ≤≤−1],1[  of the general moving checkers 

game of size n  can be easily computed in optimal )(nO  time, since for each individual step i , its 
optimal move )(0,=1][ imix −  can be computed in (1)O  time by the explicit formula (3) described 
above. 
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Concluding Remarks 
We have studied the general moving checkers game of size n . It has been proved in the section 2 

that the minimum number of steps needed to play the game of size n  is n . All of the optimal 
solutions for the moving checkers game of small size can be found by a backtracking algorithm 
presented in section 2. In the section 3, a linear time recursive construction algorithm which can 
produce an optimal solution in linear time for very large size n  is presented. The time cost of the new 
algorithm is )(nO  and )(nO  space is used. Finally, in the section 4, an extremely simple explicit 
solution for the optimal moving sequences of the general moving checkers game of size n  is given. 
The formula gives for each individual step i , its optimal move in (1)O  time. 

For the interesting moving checkers problem, some research problems are open. An interesting 
result found by the backtracking algorithm is that the number of optimal solutions for moving 
checkers games of size 8 and 9 are 16 and 32 respectively. It seems to suggest that the number of 
optimal solutions for the general moving checkers games of size n  is 42 −n , but we have failed to 
prove it. Exponential time s required to find all optimal solutions for the general moving checkers 
game by the backtracking algorithm presented in section 2. Can we find an efficient algorithm to 
generate all optimal solutions for the general moving checkers game in the time proportional to the 
output size? This is also an open problem. We will investigate these problems further. 
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