

An Optimal Algorithm for a Strategy Game

Daxin Zhu1, a and Xiaodong Wang2,b*
1 Quanzhou Normal University, Quanzhou 362000, China
2 Fujian University of Technology, Fuzhou 350108, China

a dex@qztc.edu.cn, b wangxd@fzu.edu.cn, *corresponding author

Keywords: strategy game, algorithm, explicit solution, optimal move.

Abstract. A single player strategy game is studied in this paper. We are interested in algorithms
which, given integer n, generate the corresponding move sequences to reach the final state of the
game with smallest number of steps. In this paper we present an optimal algorithm to generate an
optimal move sequence of the game consisting of n black checkers and n white checkers, and finally,
we present an explicit solution for the general game of size n.

Introduction
Combinatorial games often lead to interesting, clean problems in algorithms and complexity

theory. Many classic games are known to be computationally intractable. Solving a puzzle is often a
challenge task like solving a research problem. You must have a right cleverness to see the problem
from a right angle, and then apply that idea carefully until a solution is found.

In this paper we study a single player game called moving checkers. The game is similar to the
Moving Coins puzzle [2,3], which is played by re-arranging one configuration of unit disks in the
plane into another configuration by a sequence of moves, each repositioning a coin in an empty
position that touches at least two other coins. In our moving checkers game, there are n black
checkers and n white checkers put on a table from left to right in a row. The 22 +n positions of the
row are numbered 1,20,1, −n . Initially, the n black checkers are put on the position 1,0,1, −n ,
and the n white checkers are put on the position 1,21,, −− nnn  . The rightmost two positions n2
and 12 +n are vacant. In the final state of the game, the positions of even number n,22,4, are
occupied by white checkers, and the positions of odd number 1,23,5, +n are occupied by black
checkers, leaving the two positions 0 and 1 vacant. For easy to say, we call the number n the size of
the game even though we have n2 checkers.

A move of the game consists of shifting two adjacent checkers, keeping their order, into the
current two vacant positions. The goal of the game is to make a smallest number of moves to reach the
final state of the game.

We are interested in algorithms which, given integer n , generate the corresponding move
sequences to reach the final state of the game with smallest number of steps. In this paper we present
an optimal algorithm to generate an optimal move sequence of the game consisting of n black
checkers and n white checkers.

This paper is structured as follows.
In the following 4 sections we describe the algorithms and our computational experience with the

algorithms for generating optimal move sequence of the general game consisting of n black checkers
and n white checkers. In section 2, we describe a new variant tree search based algorithm for
generating all optimal solutions for the moving checkers games of small size. A linear time recursive
construction algorithm is proposed in section 3. Based on the recursive algorithm proposed in section
3, an explicit solution for the optimal move sequence of the general game is presented in section 4.
Some concluding remarks are in section 5.

International Conference on Materials Engineering and Information Technology Applications (MEITA 2015)

© 2015. The authors - Published by Atlantis Press 353

A Backtracking Algorithm
It is not difficult to verify the following facts on the minimum number of steps needed to play the

game.

Theorem 1 For the general game consisting of n black checkers and n white checkers, it needs

at least n steps to reach the final state of the game from its initial state.
Proof. In a row of checkers of the game, if two adjacent checkers have different colors, the two

checkers are called an inversion pairs. For example, in the initial state of the game consisting of n
black checkers and n white checkers, there is only one inversion pairs, while in the final state of the
game, there are total 12 −n inversion pairs.

It is readily to see that the inversion pairs are increased by 22 −n from initial state to the final
state of the game. In the first step of move, at most one inversion pairs can be added and in the
subsequent moves at most two inversion pairs can be added in each step. If the final state is reached
after m steps, then at most 12 −m inversion pairs are added. Therefore, we have, 2212 −≥− nm
and so 1/2−≥ nm . Since m is an integer, we have nm ≥ .

In other words, it needs at least n steps to reach the final state of the game from its initial state. ■

According to Theorem 1, if we can find a move sequence to reach the final state of the game with

n steps, then the sequence will be an optimal move sequence, since no move sequence can reach the
final state of the game in less than n steps. In order to study the structures of the optimal solutions for
the general moving checkers game, we first present a backtracking algorithm [1,5,6] to generate all
optimal solutions of the games with small size.

In the algorithm described above, the parameter i is current number of steps and the parameter e

is the left position of current vacant. The current solution is stored in array x . For ni ,1,2,=  , the
move of step i is stored in 1][−ix . This means that we move the adjacent pair of checkers located at
positions 1][−ix and 11][+−ix to the current vacant positions and leaving the positions 1][−ix
and 11][+−ix the new vacant positions. A recursive function call)1,2(nBacktrack will generate all
optimal solutions which move checkers from initial state to final state in n steps.

It is not difficult to generate all optimal solutions of the game with small size by the backtracking
algorithm described above.

For the cases of 3≤n , there are no solutions found. The unique optimal solutions found for the
cases of 4,5,6=n are {1,4,7,0}, }{1,7,4,9,0 and 1,0}{1,7,3,8,1 respectively. There are 2 optimal
solutions 6,13,0}{1,10,4,9, and ,6,9,0}{1,10,4,13 for the case of 7=n . For the case of 8,9=n ,
there are total 16 and 32 optimal solutions found respectively.

354

A Linear Time Construction Algorithm
The backtracking algorithm described in the previous section can produce all optimal solutions for

the game with fixed size n . It works only for small size n . If we concentrate to find one optimal
solution for the game, we can do better. In this section, we will present a linear time construction
algorithm which can produce an optimal solution in linear time for very large size n . The
Decrease-and-Conquer strategy [4,7] for algorithm design is exploited to design our new algorithm.

For the cases of 7≤n , we can apply the solution found in the previous section directly. For the
cases of 8≥n , we can find one optimal solution for the game recursively as follows.

It has been known that the optimal solution for the game of size n consists of n steps.
In the new construction algorithm, first 2 steps are constructed explicitly to make checkers located

at the positions 3,24,5, −n exactly the same as the initial state of a game of size 4−n .
Then, in the steps 2,3, −n , the algorithm is applied recursively to the game of size 4−n , in

which the checkers are located at the positions 3,24,5, −n .
Finally, the last 2 steps are constructed explicitly to make a whole solution.
Now we can describe the new construction algorithm Move as follows.
In the algorithm described above, the parameters first and k describe the initial state of the

sub-game of size k starting at position first . The current step of the game is stored in a global
variable step . The array x is used to store the optimal solution of the game. For example, a function
call)0,4(Move will return an optimal solution for the game of size 4 by the array {1,4,7,0}=x .

The correctness of the algorithm can be proved readily by induction. Now we consider the time

complexity for the whole algorithm. Suppose the time required by the algorithm for the game of size
n be)(nT . The first 2 moves and the last 2 moves of the algorithm Move cost (1)O time. In the
middle part of the algorithm, a recursive call is applied to a sub-game of size 4−n requiring

4)(−nT time. For the games of small size of 8<n , the time costs of the algorithm are obviously
(1)O . Therefore, the following recurrence holds for)(nT .

355








≥+− 8(1)4)(

8<(1)
=)(nOnT

nO
nT (1)

The solution of this recurrence is obviously)(=)(nOnT . In other words, the algorithm Move for
general game of size n requires)(nO time. The space used by the algorithm is obviously)(nO .

Theorem 2 The algorithm Move for solving the general moving checkers game of size n

requires)(nO time and)(nO space.

The Explicit Solution of the Problem
The optimal solution found by the algorithm Move is presented by a vector x . For ni ,1,2,=  ,

the step i of the optimal move sequence is given by 1][−ix . This means that the adjacent pair of
checkers located at positions 1][−ix and 11][+−ix will be moved in step i to the current vacant
positions and leaving the positions 1][−ix and 11][+−ix the new vacant positions. This can also be
viewed that x is a function of i . In this section we will discuss the explicit expression of function x .

For the small size cases of 4,5,6,7=n , the optimal solutions of the game can be listed as a small
two dimensional array d as follows.

Table 1: Small two dimensional array d

For the games of size 4,5,6,7=n , the step nii ≤≤,1 of the optimal solution can be expressed as

),(ind . For the cases of sub-games of size 4,5,6,7=tn − , starting at position t , the corresponding
step tnjj −≤≤,1 of the optimal solution can be expressed as),(jtndt −+ . For the general cases
of sub-games of size n , starting at position t , if the corresponding step njj ≤≤,1 of the optimal
solution is denoted as),(jtm , then for the game of size n , the optimal move niix ≤≤−1],1[must
be niim ≤≤),1(0, .

According to the algorithm Move presented in previous section, the function),(jtm can be
computed as follows.

















−+
−

−−−−
−−

+
−−−+

otherwise2)4,(
=

1=12
2=42
1=1

8<,<3),(

=),(

jtm
tnjt
tnjtn

jtn
jt

tntnjtndt

jtm (2)

356

If i or in − is a constant, then)(0,=1][imix − can be computed in (1)O time by the formula
given above. In other cases, if both i and in − are in)(nO , then the time costs to compute)(0,im
by the formula given above must be)(nO . However, we can reduce the formula further to an explicit
formula to compute each of niimix ≤≤−),1(0,=1][in (1)O time as follows.

Theorem 3 The optimal solution niimix ≤≤−),1(0,=1][found by the algorithm Move for
solving the general moving checkers game of size n can be expressed explicitly as follows.
















−++≥−
++≥+

≤−
≤−

++−++

even .32)2(
odd i−n,3212

even ,2)2(
odd ,212

32<<2)24,(4

=)(0,

inrkiin
rkii
ikiin
ikii

rkikkirdk

im (3)

 where, 1/4= −nk , 4mod= nr .

 Proof. From the construction steps of the algorithm Move , the optimal move steps can be divided

into three parts, the first 2 moves, recursive moves and the last 2 moves. Thereby the n steps of the
optimal move sequence niix ≤≤−1],1[generated by the algorithm Move can also be divided into
thee parts accordingly. These three parts are the first part ki 21 ≤≤ , the second part

32<<2 ++ rkik and the third part nirk ≤≤++ 32 , respectively, where 1/4= −nk ,
4mod= nr .

Every move step nii ≤≤,1 , corresponds to a sub-game starting at position t , and this starting
position t can also be determined by the value of i .

In the first part of the optimal move steps, the moves are generated by the first 2 moves of the
algorithm Move . It is not difficult to see that if i is odd then 1)2(= −it otherwise 2)2(= −it . In
this case, according to formula (2), if i is odd then 12=11)2(=1=)(0, −+−+ iitim , otherwise,

)2(=42)2(2=42=)(0, inintnim −−−−−− .
Similarly, in the third part of the optimal move steps, the moves are generated by the last 2 moves

of the algorithm Move . In this case, the starting position t of the sub-game corresponding to step i
can be determined by the value of in − . It is not difficult to see that if in − is odd then

1)2(= −− int otherwise)2(= int − . It can also be derived by formula (2) that, if in − is odd then
12=11)2(2=12=)(0, +−−−−−− iinntnim , otherwise,)2(==)(0, intim − .

For the second part of the optimal move steps, the starting position t of the sub-game
corresponding to step i is obviously k4 . There are k2 steps in the first part of the optimal move
steps are generated before this part and thus the step i corresponds to the step kij 2= − of the
sub-game. It follows from

44=/44= +++ rkrnn that 4=4= +−− rkntn .
 It can now be derived by formula (2) that)24,(4=),(=)(0, kirdkjtndtim −++−+ .
The proof is completed. ■
It is obvious that the optimal move sequence niix ≤≤−1],1[of the general moving checkers

game of size n can be easily computed in optimal)(nO time, since for each individual step i , its
optimal move)(0,=1][imix − can be computed in (1)O time by the explicit formula (3) described
above.

357

Concluding Remarks
We have studied the general moving checkers game of size n . It has been proved in the section 2

that the minimum number of steps needed to play the game of size n is n . All of the optimal
solutions for the moving checkers game of small size can be found by a backtracking algorithm
presented in section 2. In the section 3, a linear time recursive construction algorithm which can
produce an optimal solution in linear time for very large size n is presented. The time cost of the new
algorithm is)(nO and)(nO space is used. Finally, in the section 4, an extremely simple explicit
solution for the optimal moving sequences of the general moving checkers game of size n is given.
The formula gives for each individual step i , its optimal move in (1)O time.

For the interesting moving checkers problem, some research problems are open. An interesting
result found by the backtracking algorithm is that the number of optimal solutions for moving
checkers games of size 8 and 9 are 16 and 32 respectively. It seems to suggest that the number of
optimal solutions for the general moving checkers games of size n is 42 −n , but we have failed to
prove it. Exponential time s required to find all optimal solutions for the general moving checkers
game by the backtracking algorithm presented in section 2. Can we find an efficient algorithm to
generate all optimal solutions for the general moving checkers game in the time proportional to the
output size? This is also an open problem. We will investigate these problems further.

Acknowledgement

This research was financially supported by the Natural Science Foundation of Fujian (Grant
No.2013J01247), and Fujian Provincial Key Laboratory of Data-Intensive Computing and Fujian
University Laboratory of Intelligent Computing and Information Processing.

References

[1] R. Bird, Pearls of Functional Algorithm Design, 258-274, Cambridge University Press, 2010.

[2] Erik D. Demaine, Playing games with algorithms, Algorithmic combinatorial game theory.
Proceedings of the 26th Symposium on Mathematical Foundations in Computer Science, LNCS 2136,
18-32, 2001.

[3] Erik D. Demaine and Martin L. Demaine, Puzzles, Art, and Magic with Algorithms, Theory of
Computing Systems, vol. 39, number 3, 473-481, 2006.

[4] A. Levitin and M. Levitin, Algorithmic Puzzles, 3-31, Oxford University Press, New York,
2011.

[5] J. Kleinberg, E. Tardos. Algorithm Design, 223-238, Addison Wesley, 2005.

[6] D.L. Kreher and D. Stinson, Combinatorial Algorithms: Generation, Enumeration and Search,
125-133, CRC Press, 1998.

[7] S. Sukparungsee, Y. Areepong, Exact Average Run Length of Double Moving Control Chart,
International Journal of Applied Mathematics & Statistics, Vol. 52, No. 2, 152-158, 2014.

358

