

An improved particle swarm algorithm for heterogeneous fleet vehicle
routing problem with two-dimensional loading constraints
HaiFeng Sun1, a,*,#, KaiTai Dong2,b,#，Qun Zhang1,c ，Rui Yan,3.d

1 School of Economics and Management, University of Science and Technology Beijing, Beijing,
China

2School of Mathematics, University of Manchester, Manchester, UK.
3School of Economics and Management, Beijing Information Science and Technology University,

Beijing, China
ahafeson1991@163.com, bkaitaidong@outlook.com, c zq@ustb.edu.cn, d yr1900@163.com

* Corresponding author. # These authors contributed to this work equally

Keywords: Particle swarm optimization, Two-dimensional Packing, VRP, 2L-HFVRP, Local Search

Abstract. This paper concerns the heterogeneous fleet vehicle routing problem with two-dimensional
loading constraints (2L-HFVRP), which is a more complicated version of the vehicle routing problem
as it combines heterogeneous vehicles and two-dimensional loading constraints. We give a detailed
description of the problem and propose an improved Particle Swarm Optimization with Heuristic
Local Search (PSO_HLS) to solve the problem. The PSO_HLS, based on the classical PSO algorithm,
introduces the idea of heuristic local search to increase the diversity of the solutions. To effectively
improve the loading efficiency, a new packing heuristic algorithm, called the fitness sorting
depth-first heuristic (FSDFH), is designed. Additionally, the area contraction coefficient is
introduced to optimize the routing and loading algorithm. The robustness and effectiveness of the
proposed approach is verified by computational tests performed on widely used benchmark instances.
The numerical results obtained show that the proposed approach outperforms the existing method and
improves the best known solutions in some testing instances.

1. Introduction
The vehicle routing problem (VRP) was initially brought up by Dantzig and Ramser [1] in 1959,

and it soon attracted considerable attention from the industry and academia. Since then, VRP has been
well discussed and gradually derived into various forms of vehicle routing problems given by the
practical distribution situations. The capacitated vehicle routing problem (CVRP), normally
considering the properties of vehicles, has then been raised. It allows us to take practical variants into
account and might lead to a more effective solution. CVRP is, however, only capable of solving
one-type vehicle problems and in real distribution tasks, mixed types of vehicles are often required
for different conditions. At the same time, various types of vehicles have various capacities and take
diverse running costs, thus it increases the complexity of the routing optimization. The heterogeneous
fleet of vehicle routing problem (HFVRP) has been discussed and fast developed from there. Gorden
et al.[2] first studied the HFVRP and built a general model for an extension of the HFVRP, fleet size
and mix vehicle routing problem (FSMVRP). Based on its model, a few algorithms, including the
improved Clark-Wright (C-W) saving algorithm[3], have been attempted to solve this type of
problem. Subsequently, Gendreau et al. [4] utilized tabu search to solve the HFVRP and achieved
ideal results.

The CVRP only takes into account the capacity restriction of the vehicles, however, in the real-life
loading process it also should be required that all the freights are loaded on the base surface of the
vehicles and none of the freights can be stacked on other items due to their fragility or other special
properties. It is thereby categorized as the two-dimensional bin packing problem (2BPP). In 2006,
Iori et al. [5] first brought up the idea of the 2L-CVRP and proposed an effective approach for solving
the routing issues by applying the branch-and-cut algorithm and loading issues by employing the
branch-and-bound algorithm. Later on, a tabu search heuristic was raised by Gendreau et al. [6] to

International Conference on Materials Engineering and Information Technology Applications (MEITA 2015)

© 2015. The authors - Published by Atlantis Press 401

solve the 2L-CVRP, in which the loading part was resolved by lower bounds and a truncated
branch-and-bound algorithm. Furthermore, a guided tabu search algorithm was proposed by
Zachariadis et al. [7] to solve the 2L-CVRP. Alongside the guided tabu search algorithm, they also
designed five heuristic algorithms for loading plans and implemented them successively while
loading the freights. Fuellerer et al. [8] then successfully solved the 2L-CVRP by employing various
heuristics for the loading part and by introducing an ant colony optimization (ACO) algorithm for
overall optimization. In addition, Duhamel et al. [9] proposed a newly combined approach, namely
greedy randomized adaptive search procedure with evolutionary local search (GRASP-ELS), for the
2L-CVRP, which achieved an excellent computational result.

To summarize, remarkable progresses have been made on both the HFVRP and 2L-CVRP studies.
Nonetheless, there is a lack of scientific achievements for the combined problem: two-dimensional
loading heterogeneous fleet vehicle routing problems (2L-HFVRP) due to their high degrees of
complexity. Leung et al. [10] first attempted to solve the 2L-HFVRP by introducing a simulated
annealing with heuristic local search (SA_HLS).

 The objective of this paper is to provide an effective and efficient tool for the 2L-HFVRP called
Improved Particle Swarm Optimization with Heuristic Local Search method (PSO-HLS). This paper
also proposes a new loading heuristic algorithm which is referred to as fitness sorting depth-first
heuristic (FSDFH). Finally we takes into consideration both routing and loading optimization and
adjust it to attain the best solution by using the area contraction coefficient.

2. Problem Description
The 2L-HFVRP, short for Heterogeneous Fleet Vehicle Routing Problem with Two-dimensional

Loading constraints, is defined on a complete undirected graph G = {V, E}, where V = {0,1,⋯ , n} is
the vertex set that contains a central depot (node 0) and n customers (node 1,2,…,n); E =
�𝑒𝑒𝑖𝑖𝑖𝑖: i, j ∈ V� is the undirected edge set. Each edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸 is associated with a travel distance 𝑑𝑑𝑖𝑖𝑖𝑖
from vertex i to j. There are T different types of vehicles locating at the depot and the quantity of each
type has no upper limit. Each type of vehicle t(t = 1,2, … , T) has a loading capacity 𝑄𝑄𝑡𝑡, fixed cost 𝐹𝐹𝑡𝑡,
variable cost 𝑉𝑉𝑡𝑡, a two-dimensional rectangular loading surface 𝐴𝐴𝑡𝑡 = 𝐿𝐿𝑡𝑡 × 𝑊𝑊𝑡𝑡, where 𝐿𝐿𝑡𝑡 and 𝑊𝑊𝑡𝑡 are
the length and width respectively. Generally speaking, A vehicle with larger capacity has higher fixed
costs and variable costs, therefore we assume that 𝑄𝑄1 ≤ 𝑄𝑄2 ≤ ⋯ ≤ 𝑄𝑄𝑡𝑡， 𝐹𝐹1 ≤ 𝐹𝐹2 ≤ ⋯ ≤ 𝐹𝐹𝑡𝑡
and 𝑉𝑉1 ≤ 𝑉𝑉2 ≤ ⋯ ≤ 𝑉𝑉𝑡𝑡. The travel cost of each edge 𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸 by a vehicle type t is 𝐶𝐶𝑖𝑖𝑖𝑖𝑡𝑡 = 𝑉𝑉𝑡𝑡 × 𝑑𝑑𝑖𝑖𝑖𝑖. As
a consequence, the total cost of a route R for a vehicle type t then can be formulated as 𝐶𝐶𝑡𝑡𝑅𝑅 = 𝐹𝐹𝑡𝑡 +
∑ 𝑉𝑉𝑡𝑡 × 𝑑𝑑𝑅𝑅(𝑖𝑖),𝑅𝑅(𝑖𝑖`+1)
𝑖𝑖<|𝑅𝑅|
𝑖𝑖=1 . Each customer i(i = 1,2, … , n) requires a set of 𝑚𝑚𝑖𝑖 rectangular items,

denoted as 𝐼𝐼𝐼𝐼𝑖𝑖, in which the total weight of all items is 𝐷𝐷𝑖𝑖. In addition, each item 𝐼𝐼𝑖𝑖𝑖𝑖 ∈ 𝐼𝐼𝐼𝐼𝑖𝑖(𝑟𝑟 =
1,2, . . ,𝑚𝑚𝑖𝑖) has specific length 𝑙𝑙𝑖𝑖𝑖𝑖 and width 𝑤𝑤𝑖𝑖𝑖𝑖 . Hence the total area of the items required by
customer i is denoted as 𝑎𝑎𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖 ∗ 𝑙𝑙𝑖𝑖𝑖𝑖

 𝑚𝑚𝑖𝑖
𝑟𝑟=1 . Besides, all the items are required to load on the surface

of the vehicles, no piling-up allowed.
In the 2L-HFVRP, the objective is to optimize the routes and loading plans for vehicles that are

served to various customers and thereby minimize the total cost. The total cost consists of the fixed
cost of the selected vehicles and also the travel cost on each route. A feasible loading plan in the
2L-HFVRP must satisfy the following constraints:

1) Each vehicle must start and end at the central depot;
2) Each customer can only be serviced once by one vehicle;
3) All the items of each customer must be loaded on the same vehicle.
4) The total capacities of items on one vehicle cannot exceed the maximum capacity of the

vehicle;
5) Items are loaded with their edges parallel to the sides of the vehicle;
6) There are no overlapping areas between any items.

402

3. The Particle swarm optimization with heuristics local search algorithm
Particle swarm optimization (PSO) was initially developed by Dr. Kennedy and Dr. Eberhart [11]

in 1995. It was designed to simulate social behaviors, such as bird flocking and fish schooling, to
discover an optimal solution by moving the swarm towards the best position. In PSO, every candidate
solution is referred to as ‘a particle’ and each particle moves around in the search-space based on
given mathematical formulae over the particle’s position and velocity. Furthermore, the movements
of the particles are led by their previous local best positions and also the best position of the entirety.
When a better position is found, it will then lead the swarm move toward it, and repeatedly, an
optimal position will be ultimately discovered. The algorithm can be mathematically interpreted as
follows:

Assume the search-space is D-dimensional and the total number of the particles is n. Therefore, the
position of the i𝑡𝑡ℎ particle can be expressed by the vector 𝑋𝑋𝑖𝑖 = (𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2,⋯ , 𝑥𝑥𝑖𝑖𝑖𝑖) and the best
previous position of i𝑡𝑡ℎ particle in its moving history is 𝑃𝑃𝑖𝑖 = (𝑝𝑝𝑖𝑖1,𝑝𝑝𝑖𝑖2,⋯ , 𝑝𝑝𝑖𝑖𝑖𝑖) and then let the
position 𝑃𝑃𝑔𝑔 of particle g be the best previous position among all the particles in the whole swarm.
Moreover, the speed of the i𝑡𝑡ℎ particle is 𝑉𝑉𝑖𝑖 = (𝑣𝑣𝑖𝑖1, 𝑣𝑣,⋯ , 𝑣𝑣𝑖𝑖𝑖𝑖) and each particle moves along the path
defined by the following formulae:

𝑥𝑥𝑖𝑖𝑖𝑖
(𝑡𝑡+1) = 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑣𝑣𝑖𝑖𝑖𝑖,

𝑡𝑡+1, 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 1 ≤ 𝑑𝑑 ≤ 𝐷𝐷 (1)

𝑣𝑣𝑖𝑖𝑖𝑖
(𝑡𝑡+1) = 𝑤𝑤 ∙ 𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐶𝐶1 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ∙ (𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡 − 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡) + 𝐶𝐶2 ∙ 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() ∙ �𝑝𝑝𝑔𝑔𝑔𝑔𝑡𝑡 − 𝑥𝑥𝑔𝑔𝑔𝑔𝑡𝑡 �𝑣𝑣𝑖𝑖𝑖𝑖𝑡𝑡+1. (2)

Where 𝐶𝐶1 and 𝐶𝐶2, referred to as acceleration coefficients, are positive constants; 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟() denotes

randomly generated numbers within [0,1]; 𝑤𝑤 is termed the ‘inertia weight’, and normally larger 𝑤𝑤 is
more suitable for extensive exploration and smaller 𝑤𝑤 performs better in exploitation of local optima.
Additionally, the ranges of the positions and speed of the particles are
[−𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚,𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚] and [−𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚] respectively. If any of these exceeds the given range, then it will
be set to the boundary value. To solve the large scale problems, our algorithm explores the solution
space by employing particle swarm optimization with heuristic local search mechanism (PSO_HLS).
Table1 provides a framework for the proposed PSO_HLS algorithm. Table1. The pseudo-code for the PSO-HLS

PSO_HLS(customer demand, vehicle information)
1: Generate initial solution randomly for all particles
2: Adjust _Vehicle(new order)
3: while Number of iterations is not finished do
4: Calculate fitness values for all particles
5: Calculate 𝑃𝑃𝑖𝑖 and 𝑃𝑃𝑔𝑔.
6: for i=1:n_particle do // n_particle is the total number of particles
7: Update speed of particle i using formula(2)
8: Update position of particle i using formula(1)
9: Adjust _Vehicle(particle i);
10: Calculate fitness for particle i
11: Local_Search(particle i)
12: If new solution is better than the best existed one then
13: Replace the current solution with this new one
14: end if
15: end for
16: end while

3.1 The encoding and decoding methods of the particles. The particle swarms in this paper are
encoded in 2 × L dimensional vectors and the corresponding 2 × L dimensional vector X of each

403

particle can be decomposed into two L-dimensional vectors. The first vector Xv indicates the delivery
vehicles for customers and the second vector Xr represents the delivery orders of the corresponding
vehicles. For instance, assuming there are 8 customers and 3 vehicles with two types in total, then
mark the two vehicles with type A as 1 and 2 and similarly the one vehicle with type B as 3. Then the
position vector of a particle can be described and encoded as Table 2:

Table 2. Position vector of a particle

Customer 1 2 3 4 5 6 7 8

𝑋𝑋𝑣𝑣 1 2 1 2 3 3 1 2

𝑋𝑋𝑟𝑟 2 2 3 1 2 1 1 3

The corresponding route of this particle can be encoded as follows:
Vehicle 1 with type A： 0 → 7 → 1 → 3 → 0
Vehicle 2 with type A： 0 → 4 → 2 → 8 → 0
Vehicle 3 with type B： 0 → 6 → 5 → 0
3.2 Initial solution. The initial solutions are generated at random in our algorithm. First of all,

regardless of the loading and capacity constraints, a total of k routes are randomly generated and a
total of n customers are randomly selected to be put into each route. As a result, the initial position of
each particle is also randomly generated. For position vector Xv, an integer between 1 and k will be
selected at random in each dimension. Similarly, for position vector Xr, an integer between 1 and n
will be obtained randomly.

Not all the randomly generated initial solutions are always feasible; therefore, it is necessary to
examine all the initial solutions and make adjustments to the non-feasible ones. First off, we need to
check whether there are any vehicles overloaded or oversized. If the total weight of the items exceeds
the capacity of the vehicle, then we reallocate customer i’s items to the vehicle with the
smallest free𝑄𝑄𝑡𝑡 − 𝐷𝐷𝑖𝑖 value, where free𝑄𝑄𝑡𝑡 is the remaining capacity of vehicle t and 𝐷𝐷𝑖𝑖 is the total
weight of customer 𝑖𝑖′s items. Similarly, if the total occupation area of the items exceeds the base area
of the vehicle, then we reallocate customer 𝑖𝑖′s items to the vehicle with the smallest free𝐴𝐴𝑡𝑡 − 𝑎𝑎𝑖𝑖
value, where free𝐴𝐴𝑡𝑡 is the remaining base area of vehicle t and 𝑎𝑎𝑖𝑖 is the total base area of customer i’s
items. However, if the allocated vehicle does not have enough remaining capacity or space for the
items or all vehicles are overloaded or oversized, then add a new vehicle with biggest capacity. The
pseudo-code of the process of vehicle selection and adjustment is given in Table 3.

404

Table 3. The pseudo-code for adjust and select vehicle
Adjust_Vehicle(Order)
1: For each vehicle k in order do
2: calculate the total weight 𝑊𝑊𝑘𝑘 and total surface area 𝑆𝑆𝑘𝑘 of customers’ items served by vehicle k
3: while 𝑄𝑄𝑘𝑘<𝑊𝑊𝑘𝑘 do // vehicle k is overweight
4: randomly select customer i from vehicle k
5: If max free𝑄𝑄𝑡𝑡< 𝐷𝐷𝑖𝑖 then // customer i cannot be served by any used vehicle
6: V[t]=V[t]+1//add a new vehicle t with largest capacity
7: Insert customer i into the new vehicle
8: Else
9: insert customer into vehicle t which has minimum free𝑄𝑄𝑡𝑡 − 𝐷𝐷𝑖𝑖
10: end if
11 end while
12: while𝐴𝐴𝑘𝑘 < 𝑆𝑆𝑘𝑘 do // vehicle k is oversized
13: randomly select customer i from vehicle k
14: If max free𝐴𝐴𝑡𝑡< 𝑎𝑎𝑖𝑖 then
15: V[t]=V[t]+1//add a new vehicle t with largest surface space
16: Insert customer i into the new vehicle
17: Else
18: insert customer into vehicle t which has minimum free𝐴𝐴𝑡𝑡 − 𝑎𝑎𝑖𝑖
19: end if
20: end while
21: end for

3.3 Heuristic local search. To increase the diversity and improve the quality of the solutions, two
effective moves of heuristic local search are introduced in the following paragraphs.

a) Route-exchange: Randomly selecting a pair of customers from a single route or two various
routes and swapping the positions of the selected pair of customers, we then compute the fitness value
after the swapping process is performed. We will keep this move if we obtain a better fitness value,
otherwise, cancel the exchange operation, as shown in Fig. 1.

b) Route-interchange: The route-interchange can be implemented within any single route and
between any randomly selected route pair. When carrying out the route-interchange with in a single
route, two original arcs are deleted and the middle section will be reversed. Then two new arcs are
created to connect the route as a whole, as illustrated in Fig. 2.

Fig.1. Route-exchange

Fig. 2. Route-interchange

4. The heuristic algorithm for two-dimensional loading problems
To determine whether all the items demanded by the customers in a given route can be feasibly

loaded onto the vehicle, a new packing heuristic algorithm, which is called Fitness Sorting
Depth-First Heuristic (FSDFH), is developed.

At the beginning of loading, the left bottom corner is hypothetically set as the optimal loading
point and other feasible loading points will keep changing as the items are added in. Assuming the left
bottom corner is the origin of the coordinate plane,

405

In FSDFH, according the minimal size granularity of items, divided the rectangular loading space
into a m × n grid. According to the FSDFH, the rectangular loading space can be divided into an
m × n grid based on the minimal size of items. The loading point, which is denoted by (Abscissa,
Surplus Width, Surplus Length), will keep changing as the items are added in. As shown in Fig. 3 ,
after loading item A in the left bottom corner, feasible loading points contain a(0, W, L − 𝑙𝑙𝐴𝐴),
b(1, W − 1, L − 𝑙𝑙𝐴𝐴) , c(2, W − 𝑤𝑤𝐴𝐴, L) , …, (m − 2, 1, L) , (m − 1, 0, L) and thereby form a m × 3
matrix.

A

W

L

m-1

n-1

0 wA

lA

a b

c x

y

Fig. 3. The illustration of the way to insert an item
In addition, it is necessary to calculate the fitness values of all possible loading points using the

following rules every time we load an item.
(1) If the length and width of item A are both equal to the available loading space left, then the

fitness value is set to 1.
(2) If the width of item A is equal to the remaining loading space, but the length is smaller than the

remaining loading space so then the fitness value is set to 2.
(3) If the length of item A is equal to the remaining loading space, but the width is smaller than the

remaining loading space so then the fitness value is set to 3.
(4) If the length and width of item A are both smaller than the available loading space left, then the

fitness value is set to 4.
(5) If the length and width of item A are both equal to the available loading space left, then the

fitness value is set to infinity
More intuitively, the rules can be illustrated in Fig. 4.

R

Fitness=1

R

Fitness=2

R

Fitness=3

R

Fitness=4

Fig. 4 The rules with various fitness values
In order to improve the efficiency of loading, a few adjustments of the rules need to be made as

follows:
(a) The selected position with the minimum W-axis coordinate goes first rule: the fitness value of

the position with bigger W-axis coordinate will be added A, where A is a constant.
(b) The selected position with the minimum L-axis coordinate goes first rule: the fitness value of

the position with bigger L-axis coordinate will be added B, where B is a constant.
(c) Remaining area rule: in order to keep the remaining gap area as small as possible, for each

loaded item, the fitness value of the loading point will be added a constant C if the remaining gap area
is large.

In the process of loading, the fitness value of every possible loading point for each item will be
calculated and sorted to obtain the feasible loading solutions. By first sorting the loading point for
each item according to the fitness value of loading point, it forms the feasible loading solution.

406

Subsequently, the loading process can be described as a tree structure and the loading solution to item
i is represented as the (i + 1)𝑡𝑡ℎ layer of branches in the tree. The initial state of nodes indicates the
empty container and there are m loading points to choose. Load the first item at the loading point with
the smallest fitness value and then update information of the remaining loading points, continuing to
load items by this rule. This loading procedure forms a tree structure, which can be referred to as the
Packing Tree. Aside from the root node, each layer of the Packing Tree has m child nodes and each of
them represents a loading solution to the loading item. Given that the root node of the Packing Tree
has a depth of 0, then the depth will increase by 1 every time an item is loaded, therefore the depth of
the Packing Tree stands for the total number of items needed for shipment on each route. Sometimes
the loading point with the smallest fitness value, however, is not a feasible solution in the real process.
In order to solve this problem, we adopted a new searching method that attempts all the other possible
solutions when the current loading point fails. Making an assumption that the loading point with the
smallest fitness value for the i𝑡𝑡ℎ item fails to work, we then attempt the loading point with the second
smallest fitness value, and so on, until a feasible loading point is found. If it fails to find such a
feasible loading point, and then return to the (i − 1)𝑡𝑡ℎ item, select the point with the second smallest
fitness value and repeat the previous procedure. Analogously, we keep tracking back to the previous
item and making adjustments if it fails until we come up with the most efficient loading plan for all
the items. Table 4 shows the pseudo-code for the packing heuristics.

Table 4. Pseudocode for the packing heuristics(FSDFH)
Is_Feasible(Route r)
1: Initial loading points’ information
2: for each sorting rule do
3: obtain the loading sequence of all items
4: i=1;P[1,…,i]=1;// P[1,…,i] is the loading points array of all items in route r
5: while i<= n_item do// n_item is total number of items
6: while P[i]<= m do// m is number of loading points;
7: if loading point P[i] is feasible for item i then
8： i=i+1 //begin to load next item
9： update loading points’ information
10： if i> n_item then //all items are packing-feasible
11： return true
12： end if
13： else
14： if P[i]=m then // all the loading points are tried out
15： if i >1 then //item i isn’t the first item
16： i=i-1// return to the loaded item
17： P[i]=P[i]+1 //loading item (i-1) on the next loading point
18： Break
19： else
20： return false
21： end if
22： end if
23： P[i]=P[i]+1// loading item i on the next loading point
24： end if
25： end while
26： end while
27：end for

5. Collaborative optimization for loading and route problems
In order to conduct the collaborative optimization for effectively solving the loading and route

problems, area contraction coefficient PS is introduced to help seek the optimal solution. The basic

407

idea is to load the items every time we discover an optimal route, if the loading is successful, that is to
say that all the items can be loaded onto the vehicle without exceeding the maximum capacity and
maximum area, then return the routing and loading information; otherwise, reduce the vehicle
feasible loading area At by multiplying the area contraction coefficient PS. The pseudo-code of
collaborative optimization between packing and routing problems is demonstrated in Table 5.

Table 5. The pseudo-code for the Collaborative optimization
PSO_HLS(customer demand, vehicle information)
1: Set a series of vectors
2: while Number of iterations 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 is not finished do
3: PSO_HLS(customer demand, vehicle information)
4: Obtain best path solution r
5: if Is_feasible(route r) is true then
6: Output the best solution
7： break of loop
8: else
9: Area contraction: 𝐴𝐴𝑡𝑡 = 𝑃𝑃𝑃𝑃 ∙ 𝐴𝐴𝑡𝑡
10: end if
11: end while

6. Experimental results and analysis
The PSO-HLS algorithm used in this paper is coded in Matlab, and all of the experiments and

computations are executed on a PC with Core 2 Duo 2.67GHz , 2GB RAM and Windows 7 operating
system.

6.1 Parameter settings. After our preliminary tests on the data, we decide to use the following
parameters for the PSO-HLS algorithm: the total number of particles n_particle=200, the maximum
number of iterations IterMax =100, the maximum number of consecutive non-optimizing results K=
20, the total number of loops Tmax = 10, the area contraction coefficient PS= 0.95 and the penalty
coefficient ∅ = 20. In the results, the cost listed is the best cost achieved over 10 runs, BKS is the best
known solution among previous approaches (ACO[8], SA[12], EGTS_LBFH[13], GRASP*ELS[9],
and PRMP[14]) and Time(s) is the CPU time in seconds to run the algorithm. The improvement, as
shown in the %Gap column, can be calculated in terms of cost and BKS（Gap% = 100*(BKS-
Cost)/BKS） 6.2 2L-CVRP testing result. To validate the effectiveness of our algorithm, we test the algorithm
using 2L-CVRP benchmark instances in the first place. A total number of 180 instances, based on the
36 classic CVRP instances introduced by Toth and Vigo [15], are developed and expanded through
five various classes by Iori[16]. As stated above, these instances comprise of 5 classes in total. In the
benchmark instances used in this test, the length and width of the vehicle are preset to 40 and 20
respectively. Additionally, the distance between each customer is Euclidean distance. In the end, we
compare the obtained results with the known solutions of Duhamel’s GRASP*ELS algorithm and
Zachariadis’s PRMP algorithm. Table 6 shows the comparison of the computational results between the PSO_HLS algorithm and
other known method on the pure CVRP instances of Class 1, where the operating time and cost are
recorded.. From Table 6, it can be observed that the PSO_HLS algorithm enables to obtain the
majority of the optimal solutions to these instances, in which the obtained results are even better than
the best known solutions (BKS) in 8 of them. The biggest percentage gap between the average and
best solution is up to 5.72%.

408

Table 6. Comparison results on the pure CVRP instances of Class1

Inst. BKS
GRASP*ELS PRMP PSO_HLS

%Gap
Cost Time(s) Cost Time(s) Cost Time(s)

1 278.73 278.73 0.0 278.73 0.0 273.20 0.0 1.98
2 334.96 334.96 0.0 334.96 0.0 325.60 0.0 2.79
3 358.40 358.40 0.0 358.40 0.0 361.38 0.0 -0.83
4 430.88 430.88 0.0 430.88 0.0 430.88 0.0 0.00
5 375.28 375.28 0.0 375.28 0.0 376.20 0.0 -0.25
6 495.85 495.85 0.0 495.85 0.0 467.47 0.0 5.72
7 568.56 568.56 0.0 568.56 0.0 563.41 0.0 0.91
8 568.56 568.56 0.0 568.56 0.0 561.11 0.0 1.31
9 607.65 607.65 0.0 607.65 0.0 582.92 0.0 4.07

10 535.74 535.80 0.0 535.80 0.1 535.80 0.4 -0.01
11 505.01 505.01 0.0 505.01 0.0 505.01 0.6 0.00
12 610.00 610.00 0.2 610.00 0.2 592.00 0.5 2.95
13 2006.34 2006.34 0.0 2006.34 0.3 2006.34 0.3 0.00
14 837.67 837.67 0.2 837.67 0.1 837.67 0.8 0.00
15 837.67 837.67 0.0 837.67 0.4 837.67 0.3 0.00
16 698.61 698.61 0.0 698.61 0.3 697.50 1.1 0.16
17 861.79 861.79 0.0 861.79 1.6 861.79 1.5 0.00
18 723.54 723.54 8.3 723.54 3.6 723.54 10.1 0.00
19 524.61 524.61 0.3 524.61 2.1 524.61 0.9 0.00
20 241.97 241.97 4.5 241.97 7.2 251.32 11.7 -3.86
21 687.60 687.60 1.4 687.60 3.8 687.60 8.2 0.00
22 740.66 740.66 2.1 740.66 2.8 740.66 4.1 0.00
23 835.26 835.26 3391.3 835.26 48.7 835.26 61.2 0.00
24 1024.69 1026.60 53.3 1024.69 38.1 1024.69 51.9 0.00
25 826.14 827.39 2.4 826.14 8.6 826.14 10.4 0.00
26 819.56 819.56 0.4 819.56 11.2 821.76 20.1 -0.27
27 1082.65 1082.65 486.5 1082.65 172.3 1082.65 183.6 0.00
28 1040.70 1042.12 129.8 1042.12 71.2 1043.70 201.4 -0.29
29 1162.96 1162.96 549.6 1162.96 121.9 1162.96 194.5 0.00
30 1028.42 1033.42 2165.9 1028.42 267.5 1028.42 1903.2 0.00
31 1299.56 1306.07 5096.1 1299.56 353.8 1302.63 3014.5 -0.24
32 1296.91 1303.52 4492.4 1296.91 312.0 1296.91 3822.6 0.00
33 1299.55 1301.06 4842.1 1299.55 434.1 1299.55 4018.1 0.00
34 709.82 713.51 3007.4 709.82 328.2 709.82 2176.3 0.00
35 866.06 870.63 2616.5 866.06 396.3 866.06 3011.2 0.00
36 585.46 592.87 5264.7 585.46 228.9 590.65 4019.4 -0.89

Avg 769.66 770.77 892.1 769.70 78.2 767.63 631.4 0.37

Table 7 represents the average comparison results for the unrestricted and non-oriented 2L-CVRP

of Classes 2-5. According to the computational results on Table 7, the proposed PSO_HLS algorithm
is able to acquire the BKS in most testing instances and some results are better than the BKS, and the
rest of the results are very close to the BKS. Overall the outcome gained from the PSO_HLS
algorithm reaches to an average 0.18 percent improvement than the BKS. Despite the fact that the
average operating time of the PSO_HLS is relatively longer than other existing algorithms as it
belongs to swarm intelligence algorithm, it still has high comparability.

409

Table 7. Average comparison results for the Unrestricted and Non-Oriented 2L-CVRP(Classes2-5)
Inst. BKS

GRASP*ELS PRMP PSO_HLS
%Gap Cost Time(s) Cost Time(s) Cost Time(s)

1 281.23 282.65 0.9 281.23 0.4 281.23 0.6 0.00
2 339.26 339.26 0.1 339.26 0.3 327.75 0.5 3.39
3 376.32 376.32 0.5 376.32 0.4 376.32 0.7 0.00
4 435.00 435.01 0.2 435.01 0.3 435.01 0.9 0.00
5 379.03 379.03 0.1 379.03 1.1 379.03 2.4 0.00
6 496.77 497.04 0.4 497.04 0.3 494.21 0.3 0.52
7 690.67 691.11 1.4 690.67 1.6 690.67 2.1 0.00
8 678.84 678.84 0.8 678.84 2.6 678.84 3.6 0.00
9 611.05 612.01 0.6 612.01 1.6 597.57 4.1 2.21
10 675.59 675.79 15.1 676.75 26.9 676.75 41.1 -0.17
11 702.96 705.95 11.3 703.22 27.2 703.22 32.5 -0.04
12 611.26 611.26 16.9 611.26 1.4 607.5 3.6 0.62
13 2486.17 2490.62 78.0 2491.18 52.7 2490.62 45.2 -0.18
14 974.04 984.42 79.9 975.88 164.3 975.88 154.1 -0.19
15 1128.86 1144.69 257.7 1132.91 20.1 1132.91 29.2 -0.36
16 699.79 699.79 6.0 699.79 4.1 692.56 6.3 1.03
17 862.26 864.05 21.6 864.05 2.4 848.75 4.5 1.57
18 1028.61 1029.71 413.5 1031.95 33.0 1031.95 46.2 -0.32
19 739.15 739.19 268.5 741.78 24.3 741.78 37.3 -0.36
20 515.44 522.68 1658.3 515.44 552.2 515.44 603.8 0.00
21 991.50 994.58 1450.8 992.78 241.5 992.78 309.1 -0.13
22 1017.33 1021.45 965.0 1023.01 166.6 1023.01 201.2 -0.56
23 1032.36 1038.16 1373.6 1032.36 336.8 1032.36 451.1 0.00
24 1099.57 1107.93 480.3 1104.64 319.6 1104.64 343.6 -0.46
25 1340.18 1345.08 2967.7 1341.26 921.7 1341.26 1021.5 -0.08
26 1311.79 1317.41 2299.2 1311.79 403.5 1311.79 511.2 0.00
27 1318.04 1323.54 2716.6 1318.04 438.2 1318.04 457.3 0.00
28 2530.46 2560.06 5065.5 2530.46 3701.9 2530.46 3952.4 0.00
29 2173.02 2191.46 4128.6 2173.02 1835.7 2173.02 2014.2 0.00
30 1760.16 1775.44 4753.7 1760.59 2151.8 1760.59 2559.3 -0.02
31 2244.13 2282.28 4988.2 2244.13 2927.4 2244.13 3089.7 0.00
32 2196.85 2233.27 4900.6 2196.85 3713.8 2196.85 4538.2 0.00
33 2261.68 2284.82 4988.9 2261.68 1964.8 2261.68 2597.1 0.00
34 1157.22 1191.13 5244.5 1157.22 3551.7 1157.22 4103.1 0.00
35 1401.17 1435.22 5015.5 1401.17 2756.5 1401.17 3011.4 0.00
36 1669.44 1729.79 4874.0 1669.44 4245.6 1669.44 4322.6 0.00

Avg 1117.14 1127.53 1640.1 1118.11 849.8 1116.57 958.4 0.18

6.3 Instance tests on 2L-HFVRP. Leung et al. expanded 180 instances of the 2L-CVRP and

created more general instances for the 2L-HFVRP. Similarly, there are also a total number of 180
instances, however, unlike the 2L-CVRP, it offers multiple choices of vehicle information to select in
each instance. For the instances of the 2L-HFVRP, the testing data gets rid of the limitation on the
number of vehicles and is replaced by the vehicle information instead. That is to say, for a given type
of fleet, we can employ as many vehicles for delivery as we require. Nonetheless, in order to reduce
the total cost, obviously the number of used vehicles should be controlled in a relatively small range. Table 8 illustrates the comparison of the computational results between the PSO_HLS and
SA_HLS algorithm on the 2L-HFVRP instances of Class 1, where the running time and average cost
are recorded as before. Based on the obtained result, it can be concluded that the PSO_HLS
outperforms the SA_HLS in many testing instances. Moreover, the average improvement percentage
is 2.06%, which indicates that the average performance of the PSO_HLS is better than the best known
algorithm. Again, the running time of the PSO_HLS, however, is longer than other algorithms as it is
a swarm intelligence algorithm.

410

Table 8. Comparison results for the 2L-HFVRP of Class1
No. SA_HLS PSO_HLS %Gap Cost Time(s) Cost Time(s)
1 596.07 33.59 589.21 50.24 1.15
2 679.18 32.01 677.46 61.52 0.25
3 745.51 54.24 749.41 73.54 -0.52
4 694.33 18.36 696.36 45.2 -0.29
5 761.19 26.99 761.19 70.44 0.00
6 809.56 25.65 806.54 54.81 0.37
7 3211.53 29.76 3201.76 61.21 0.30
8 3184.45 24.3 3182.03 72.42 0.08
9 1029.95 40.28 1030.09 54.61 -0.01
10 5149.51 25.88 5012.65 52.59 2.66
11 5119.4 26.47 4932.54 39.71 3.65
12 1658.56 92.8 1655.27 124.21 0.20
13 14655.4 32.18 14596.16 55.42 0.40
14 10019 73.21 9929.08 97.74 0.90
15 10151.7 55.29 10048.57 77.6 1.02
16 1292.58 76.92 1283.79 96.21 0.68
17 1770.83 225.59 1766.48 256.33 0.25
18 3140.55 35.35 3131.38 65.43 0.29
19 1553.11 107.81 1555.21 142.15 -0.14
20 1956.97 71.57 1948.52 92.67 0.43
21 2567.18 195.66 2568.22 226.38 -0.04
22 2605.9 174.72 2507.45 203.42 3.78
23 2643.84 239.29 2641.75 273.41 0.08
24 2555.41 156.41 2551.13 174.53 0.17
25 2972.59 253.09 2874.27 288.49 3.31
26 4049.64 180.23 4049.64 208.21 0.00
27 3561.58 230.49 3556.79 246.69 0.13
28 6858.35 161.05 6858.35 177.36 0.00
29 9695 142.63 9689.06 165.71 0.06
30 5663.33 259.83 5663.56 271.01 0.00
31 8054.9 483.44 8054.9 519.24 0.00
32 8408.61 410.86 7405.79 441.94 11.93
33 8555.58 486.25 7556.83 535.55 11.67
34 5536.63 425.8 4945.34 474.42 10.68
35 4444.59 401.58 4253.26 424.73 4.30
36 3669.89 605.31 3064.76 619.48 16.49

Avg 4167.29 164.30 4049.86 191.52 2.06

Table 9 provides the average comparison results for the unrestricted and non-oriented 2L-HFVRP

of Classes 2-5. By observing the data in Table 4, we realize that the average improvement percentage
for all the instances is up to 1.6% and the running time is also reasonable and acceptable.

411

Table 9. Average Comparison results for the Unrestricted and Non-Oriented 2L-HFVRP (Class2-5)
No.

SA_HLS PSO_HLS
%Gap Cost Time(s) Cost Time(s)

1 600.77 29.89 591.46 40.91 1.55
2 699.21 32.88 690.52 56.22 1.24
3 770.12 33.84 768.43 81.31 0.22
4 698.19 30.04 689.71 45.02 1.21
5 786.84 27.68 786.84 51.97 0.00
6 831.32 42.78 831.39 60.24 -0.01
7 5630.02 31.08 5630.02 49.17 0.00
8 5602.60 30.22 5502.27 44.23 1.79
9 1035.62 58.75 1021.80 79.02 1.33
10 7625.05 43.27 7518.65 71.83 1.40
11 8329.69 52.61 8120.83 82.45 2.51
12 1681.07 167.21 1673.58 201.44 0.45
13 25978.70 69.95 25576.49 79.28 1.55
14 10869.10 78.10 10876.37 101.40 -0.07
15 11490.10 91.53 11486.31 152.50 0.03
16 1291.87 110.89 1291.87 142.56 0.00
17 1776.54 191.01 1783.59 301.31 -0.40
18 5676.16 88.80 5676.77 107.80 -0.01
19 4242.48 180.33 4232.54 244.74 0.23
20 6153.31 175.47 6154.37 205.46 -0.02
21 8220.77 292.14 8224.77 401.93 -0.05
22 8574.44 317.36 8584.59 409.20 -0.12
23 8316.57 357.79 8316.57 414.56 0.00
24 4547.84 288.63 4440.19 396.02 2.37
25 11367.90 473.87 11367.90 503.49 0.00
26 11781.50 363.10 12772.63 405.22 -8.41
27 5695.23 282.47 5697.76 203.51 -0.04
28 22611.00 614.35 20604.36 582.43 8.87
29 21876.20 494.77 21881.79 489.34 -0.03
30 15793.10 811.79 14788.31 905.78 6.36
31 21125.50 1114.64 20126.65 1503.82 4.73
32 20110.70 968.59 19100.58 893.50 5.02
33 21419.60 857.77 19421.82 1043.43 9.33
34 14484.50 1596.04 12486.43 1805.67 13.79
35 8962.14 1213.94 8709.22 1711.24 2.82
36 4385.78 1119.91 4385.65 1904.73 0.00

Avg 8640.04 353.71 8383.70 438.13 1.60

Fig. 5 reflects the improvement percentages of the PSO_HLS algorithm over the best known

algorithm in all the experiments for the 2L-HFVRP, consisting of both Class 1 and Class 2-5. It can be
concluded from Fig. 5 that compared to the given best algorithm, the PSO_HLS has shown
significant improvement. The PSO_HLS presents an excellent ability to solve the 2L-HFVRP. The
biggest improvement percentage is over 16%, which signifies that our proposed approach is an
effective solution to the 2L-HFVRP.

Fig. 5. 2L-HFVRP Results

-20

0

20

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35%
G

ap

instances Class1
Class2-5

412

7. Summary
This paper focuses on the heterogeneous fleet vehicle routing problems with two-dimensional

loading constraints (2L-HFVRP) and its objective is to generate the minimum cost routes with
feasible loading plans. To solve this problem, this paper proposed an improved particle swarm
optimization algorithm with the heuristic local search (PSO_HLS) to enhance the diversity of the
solutions. Additionally, in order to improve the loading efficiency, we designed a new heuristic
loading algorithm named the Fitness Sorting Depth-First Heuristic (FSDFH). The FSDFH algorithm
adopts the tree structure to record the routes’ feasible loading information. To optimize the loading
and route algorithms, the area contraction coefficient is introduced to help lead to a feasible solution.
In the end, to test the robustness and effectiveness of the proposed approach, we initially solve a wide
array of 2L-CVRP benchmark instances, compare the results with the known solutions and validate
its excellent performance in solving 2L-CVRP. Moreover, testing the proposed algorithm on the
2L-HFVRP instances also returns an ideal outcome.

Acknowledgements
This research was funded by the National Nature Science Foundation of China (Grant No.

71172168). I would also like to thank Talisa Hernandez for her great support and help throughout the
research.

References
[1] G.B. Dantzig, J.H. Ramser: The Truck Dispatching Problem. Management Science. Vol. 6(1)
(1959), p. 80-91.
[2] B. Golden, A. Assad and L. Levy: The Fleet Size and Mix Vehicle Routing Problem. Computers
& Operations Research. Vol. 11(1), (1984), p. 49-66.
[3] G.U. Clarke, J.W. Wright: Scheduling of Vehicle From A Central Depot To A Number of
Delivery Points. Operations Research. Vol. 12(4), (1964), p. 568-581.
[4] M. Gendreau, A. Hertz and G. Laporte: A Tabu Search Heuristics for the Vehicle Routing
Problem. Management Science. Vol. 40 (1994), p. 1276-1290.
[5] M. Iori, J.J. Salazar Gonzalez and D. Vigo: An Exact Approach for the Vehicle Routing Problem
with Two-dimensional Loading Constraints. Transportation Science. Vol. 41(2) (2007), p. 253-264.
[6] M. Gendreau, M. Iori, and G. Laporte: A Tabu Search Heuristic for the Vehicle Routing Problem
with Two-dimensional Loading Constraints. Networks. Vol. 51(1) (2008), p. 4-18.
[7] E.E. Zachariadis, C.D. Tarantilis and C.T. Kiranoudis: A Guided Tabu Search for the Vehicle
Routing Problem with Two-dimensional Loading Constraints. European Journal of Operational
Research. Vol. 195(3) (2009), p. 729-743.
[8] G. Fuellerer, K.F. Doerner and R.F. Hartl: Ant Colony Optimization for the Two-dimensional
Loading Vehicle Routing Problem. Computers & Operations Research. Vol. 36(3) (2009), p. 655-673
[9] C. Duhamel, P. Lacomme and A. Quilliot: A Multi-start Evolutionary Local Search for the
Two-dimensional Loading Capacitated Vehicle Routing Problem. Computers & Operations Research.
Vol. 38(3) (2011), p. 617-640.
[10] S.C. Leung, Z. Zhang and D. Zhang: A Meta-heuristic Algorithm for Heterogeneous Fleet
Vehicle Routing Problems with Two-dimensional Loading Constraints. European Journal of
Operational Research. Vol. 225(2) (2013), p. 199-210.

413

[11] J. Kennedy, R.C. Eberhart: Particle Swarm Optimization. Proc. IEEE International Conference
on Neural Networks , IV. Piscataway , NJ : IEEE Service Center (1995), p. 1942 -1948.
[12]S. Leung, J. Zheng, D. Zhang and X. Zhou: Simulated Annealing for the Vehicle Routing
Problem with Two-dimensional Loading Constraints. Flexible Services and Manufacturing Journal.
Vol. 22 (2010), p. 61–82.
[13]S.C.H. Leung, X. Zhou, D. Zhang and J. Zheng: Extended Guided Tabu Search and A New
Packing Algorithm for the Two-dimensional Loading Vehicle Routing Problem. Computers &
Operations Research. Vol. 38 (2011), p. 205–215.
[14] E.E. Zachariadis, C.D. Tarantilis, and C.T. Kiranoudis: Integrated Distribution and Loading
Planning via a Compact Metaheuristic Algorithm. European Journal of Operational Research. Vol.
228 (2013), p. 56–71.
[15] P. Toth, D. Vigo: The Vehicle Routing Problems. Philadelphia, PA, SIAM Monographs on
Discrete Mathematics and Applications (2002).
[16] M. Iori: Metaheuristic Algorithms for Combinatorial Optimization Problems. 4OR: A Quarterly
Journal of Operations Research. Vol. 3(2) (2015), p.163-166.

414

	HaiFeng SunP1, a,*,#P, KaiTai DongP2,b,#P，Qun ZhangP1,c P，Rui YanP,3.d
	1. Introduction
	2. Problem Description
	3. The Particle swarm optimization with heuristics local search algorithm
	Table1. The pseudo-code for the PSO-HLS
	Table 2. Position vector of a particle
	Table 3. The pseudo-code for adjust and select vehicle
	Fig. 2. Route-interchange
	4. The heuristic algorithm for two-dimensional loading problems
	Fig. 3. The illustration of the way to insert an item
	Fig. 4 The rules with various fitness values
	Table 4. Pseudocode for the packing heuristics(FSDFH)
	Table 5. The pseudo-code for the Collaborative optimization
	6.1 Parameter settings. After our preliminary tests on the data, we decide to use the following parameters for the PSO-HLS algorithm: the total number of particles n_particle=200, the maximum number of iterations IterMax =100, the maximum number of co...
	6.2 2L-CVRP testing result. To validate the effectiveness of our algorithm, we test the algorithm using 2L-CVRP benchmark instances in the first place. A total number of 180 instances, based on the 36 classic CVRP instances introduced by Toth and Vigo...
	Table 6. Comparison results on the pure CVRP instances of Class1
	Table 7. Average comparison results for the Unrestricted and Non-Oriented 2L-CVRP(Classes2-5)
	Table 9. Average Comparison results for the Unrestricted and Non-Oriented 2L-HFVRP (Class2-5)
	Fig. 5. 2L-HFVRP Results
	7. Summary
	Acknowledgements
	References

