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Abstract. In this paper, an optimal control model based on an improved HIV model is considered. 
Using of condom, screening of unaware infectives and incentive for treatment of the infected are 
used as the control items. Base on the same objective functional to minimize the unaware 
individuals and the cost of three kinds control at a given stage, we give four different optimal 
strategies with four different control suppose. By comparing the optimal strategies and dynamic 
trend of our model, we find that the dynamic trends are almost the same and the three different 
controls play different role, but simulation also shows that the screening control of unaware 
infectives play a relative small role when compare with the control of condom use and incentive 
control for treatment. 

Introduction  
Acquired Immunity Deficiency Syndrome(AIDS) is the disease that has affected the whole 

world in the 20 years since it was first detected. It is caused by Human Immunodeficiency 
Virus(HIV). 34.3 million People live with HIV infection today and more than 24 million are in the 
developing world [1]. 

Mathematical models of transmission dynamics of HIV play an important role in better 
understanding of epidemiological patterns for disease control as they provide short and long term 
prediction of HIV and AIDS incidence[2,3,4,5,6,7,8]. On the other hand, optimal control theory has 
been applied extensively in HIV models [9, 10, 11, 12, 13, 14, 15].  H. R. Joshi [15] built optimal 
control model about HIV based on an ordinary differential equation. The optimal drug strategies are 
determined for various stages of initiation of treatment. Later, the HIV models become more and 
more complicated because more factors were considered, such as activated and resting CD4+cells 
were contained. Further more, two major categories of anti-retroviral drugs to combat HIV are 
reverse transcriptase inhibitors (RTIs) and protease inhibitors (PIs), then the RTI control variable 
and the PI control variable were joined into the system[16]. In paper [8], a HIV model was given as 
follows:  
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where ( )S t  is the susceptible individuals, the unaware infective individuals is denoted by 1( )I t , 

2 ( )I t  represent the aware infective individuals by screening but not be on treatment, the individuals 
who are on treatment are stood for by ( )H t and ( )A t represents the AIDS population. 
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= , where 1 1(0 1)u u≤ ≤ is the condom use control, 

1 2( ) ( ) ( ) ( ) ( ) ( )N t S t I t I t H t A t= + + + + is the number of the total human population at time t , the 
parameters ( 1, 2,3, )i i hβ =  are the probabilities for susceptible individuals with unaware infectives, 
infectives have been aware, AIDS individuals and HIV positive individuals on treatment 
respectively. 0Q  is the constant rate of immigration of the susceptible, µ  represents the natural 
mortality rate,θ measures the rate at which unaware infectives are detected by a screening method 
to become aware infectives, π  measures the rate at which the already aware infective individuals 
receive treatment, δ is the rate by which all the  individuals with HIV develop AIDS, σ is the 
modification parameter due to treatment,α is the AIDS related death rate.  

Paper [8] pointed that effective control of the disease may be too costly when constant controls 
are considered as it requires treatment at higher levels for all time and then gave a time dependent 
controls model is as follows: 
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where 2 2(0 1)u u≤ ≤  is the control on screening of unaware infectives , 3 3(0 1)u u≤ ≤ is the control 
on treatment of infectives. Paper [8] also gave some simulations to compare the function of 
different controls, but 2 0u = in model (2) means that there is no screening of unaware infectives, 
and it neglects the rate at which unaware infectives are detected to become aware infectives without 
screening method. As for 3u , since 30 1u≤ ≤ , it seems unreasonable because the already aware 
infective individuals have their own right to choose to be treated or not. So in order to find the 
optimal screening method, and considering the corresponding intervention to treatment, we gave 
another optimal control model with screening method and intervention to treatment as follows: 
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where 2u  represents the passive screening, and θ  represents the active screening by individuals, 

3u  represents the incentive control for treatment, we use 3(1 )uε δ− to reflect the effect to 
progression rate of HIV positive individuals on treatment to AIDS population by the control 3u . 
This paper intend to search for the optimal control strategy and compare the role of each control.  

The organization of the paper is as follows. In section 2, the optimal control problem is 
proposed, the existence of the optimal control system is proved. Section 3 simulates the different 
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cases based on four kinds of control. Section 4 draws the conclusion. 

The existence of the optimal control  
Our optimal goal is to minimize the number of unaware infectives and the cost of applying the 

control 1 2,u u  and 3u , so we choose the objective functional 1 2 3( , , )J u u u  as follows: 

1 2 3( , , )J u u u =
01 2 3

2 2 2
1 11 1 22 2 33 3, ,

min ( )ft

tu u u
aI b u b u b u dt+ + +∫ .           (4) 

where { }1 2 3 0( , , ) |  measurable,  , , , for 1, 2,3i i i i fU u u u u a u b t t t i = ≤ ≤ ∈ =  is the control set. which 

ia  and ( 1,2,3)ib i =  stand for the minimum and maximum effect. The term a  represents the 
weight of 1I  and the positive constants 11 22 33, ,b b b  takes into account financial constraints. We 
will prove the existence of 1 2 3( , , )u u u  satisfy that:

1 2 3
1 2 3 1 2 3( , , )

min ( , , ) ( , , )
u u u

J u u u J u u u∗ ∗ ∗= .                                                       

To use an existence result, we must check the following properties [17]: 
1. The set of controls and corresponding state variables is non-empty. 
2. The control U  set is convex and closed. 
3. The state system is bounded in the state and control variables. 
4. The integrand of the objective functional is concave on U . 
5. There exists constants 1 2, 0η η > , and 1β >  such that the integrand 1 1 2 3( , , , )L I u u u  of the 

objective functional satisfies: 

( ) ( ) 22 2 2
1 1 2 3 1 1 2 3 2, , ,L I u u u u u u

β

η η≥ + + − .                 

In order to verify these conditions, we use a result by [18] to give the existence of solutions of 
model (3) with bounded coefficients, which gives condition 1. We note that the solutions are 
bounded. Our control set satisfies condition 2. Equation (3) satisfies condition 3 is easily to verified, 
using the boundedness of the solutions. 

Note that the integrand of our objective functional is concave. Also we have the last condition 
needed: ( )2 2 22 2 2

1 11 1 22 2 33 3 1 1 2 3 2aI b u b u b u u u uη η+ + + ≥ + + − .                

where 1η  depends on the upper bound on 1I ; and 2 0η ≥  since 11 22 33, , 0b b b > . We conclude 
there exists an optimal control pair. 

The Hamiltonian function, defined by using the dynamic constraint (3) and the Lagrangian 
2 2 2

1 1 1 2 2 3 3L aI b u b u b u= + + +  is as follows: 
2 2 2
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Using Pontryagin’s minimum principle, the necessary conditions (in terms of the Hamiltonian) 
for U ∗  to be an optimal control is as following:  
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So we get the optimal control: 
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The optimal control system thus, is a coupled forward state equation and a backward adjoint 
equation, along with the regular control. This problem, being nonlinear and coupled in nature, needs 
to be solved using concurrent and iterative numerical procedures. In this paper, the optimal strategy 
is simulated by solving the state and adjoint systems and the transversality conditions based on 
Runge-Kutta fourth order scheme and the steepest gradient method [19]. 

Simulation and discussions 
Table 1 : The parameter values we used 

Parameters              Value                    Reference                                                                                                      

1β                      0.8                        [8]  

2β                     0.55                        [8] 

3β                     0.32                        [8] 

hβ                     0.15                        [8] 
µ                     0.2                          [8] 
α                      1                           [8] 

0Q                     2000                        [8] 
δ                       0.1                        [8] 
θ                       0.002                      [8] 
π                       0.66                       [8] 
σ                       0.002                      [8] 

1c                       0.1                        [8] 

2c                       0.1                        [8] 

3c                       0.1                        [8]  
ε                       0.002                      Assumed                                
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In this section, we simulate the optimal control of model (3) and compare the four cases of 
condom use, screening of unaware infectives and incentive control for treatment on the transmission 
dynamics of the disease. The parameter values we used are given in Table 1. 

The cost coefficients 11 22 33800, 35, 95, 175a b b b= = = =  and the initial condition is taken to be 

1 2(0) 800, (0) 100, (0) 100, (0) 100, (0) 100.S I I H A= = = = = Efficacy  1 2 3, ,u u u  can theoretically lie 
between 0 and 1. The minimum effect ( 1,2,3)ia i =  is set to be 0, which corresponds to no control 
function. However, the maximum effect is taken to be less than 1, for the control can’t be 
completely effective and, so the maximum effect ( 1,2,3)ib i =  is set to be 0.98. 

We investigate and compare numerical results in the following scenario:   
Case 1 The three kinds of control efforts on condom use ( 1u ), screening of unaware infectives 

( 2u ) and treatment ( 3u ) are made to be optimized, the simulation results are shown in Figure 1 and 
Figure 2. 

 
Figure 1 The optimal control strategy of 1 2 3, ,u u u  

 
Figure 2  The comparison between the optimal control and no control 

We use red curve to represent the dynamic trend with optimal control and blue curve to 
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represent the dynamic trend with no control. From Figure 2 we know that the optimal control can 
make the susceptible individuals far more than that with no control, while the other four kinds of 
individuals in our model much less than that with no control, which show that the HIV has been 
effectively controlled based on the our optimal control strategy. But since our optimal goal is to 
minimize the number of unaware infectives and the cost of applying the control, so when the 
condom use and Incentives for treatment keep the maximum level at the beginning stage, the level 
of screening of unaware infectives should be kept at a low level. 

In the following part, we choose one of the three controls( 1 2 3, ,u u u ) to be zero to simulate the 
corresponding optimal control and compare their effect on the dynamics trend of the five kinds of 
individuals in our model.  

Case 2: The treatment control ( 3u ) is set to zero and optimal control result of 1u  and 2u  are 
given in Figure 3. The dynamics trend of the five kinds of individuals with and without control are 
given in Figure 4.  

 
Figure 3  The optimal control strategy of 1 2,u u  

 

Figure 4 The comparison between the optimal control 1 2,u u  and no control. 
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Case 3: The control on screening of unaware infectives ( 2u ) is set to zero and the optimal 
control result of 1u  and 3u  are given in Figure 5.  The dynamics trend of the five kinds of 
individuals with and without control are given in Figure 6.  

 

Figure 5  The optimal control strategy of 1 3,u u  

 

Figure 6 The comparison between the optimal control 1 3,u u  and no control. 

Case 4: The control on condom use ( 1u ) is set to be zero and the optimal control result of 2u  
and 3u  are given in Figure 7. The dynamics trend of the five kinds of individuals with and without 
control are given in Figure 8.  

By comparing Figure 1 with Figure 3, we find that when incentives for treatment is zero(Case 2), 
the control of condom use should take longer time to keep maximum effect. But form Figure 1 and 
Figure 5, no obvious difference can be seen when screening of unaware infectives is zero(Case 3), 
which shows that the screening of unaware infectives( 2u ) has almost no impact on 1 3andu u . 
Similarly, when the control of condom use is zero (Case 4), the screening of unaware infectives and 
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drug treatment should take longer time than Case 1. As to the dynamics trend, there are no obvious 
differences within Figure 2, Figure 4, Figure 6 and Figure 8. From the above analysis, we found that 
the screening control of unaware infectives play a relative small role, the more effective control 
should be the control of condom use and incentive control for treatment. 

 

Figure 7  The optimal control strategy of 2 3,u u . 

 

Figure 8  The comparison between the optimal control 2 3,u u  and no control. 

Conclusion 
In this paper, we modified the optimal control for HIV model. The conditions for optimal 

control of the disease with effective use of condoms, incentive control for treatment and screening 
of infectives were analyzed. We find that if the objective functions are same, the dynamic trends of 
the five kinds of individuals in our model are almost the same whether or not one of the control is 
set to be zero. By setting one of the three controls to be zero, we found that the three different 
controls play different role, when incentives for treatment is zero(Case 2), the control of condom 
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use should take longer time to keep maximum effect, when the control of condom use is zero (Case 
4), the screening of unaware infectives and drug treatment should take longer time, but simulation 
showed that the screening control of unaware infectives play a relative small role when compare 
with the control of condom use and incentive control for treatment, so in order to minimize the cost 
of applying the control, the screening control of unaware infectives can be weakened while the 
other two controls should be encouraged.   

It should be pointed that the true situation must be more complex and varied than what we have 
described, but the analytical results could give structures for treatment that could prove foundational 
for future practice. We believe that the analysis and simulation presented in this paper, can play 
some role in developing an improved HIV treatment regimen. 
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