

A Fuzz system of the SMS module on cellphones
Fu Zidan, Zhang Quan

School of Electronic Science and Engineering, National University of Defense Technology,
Changsha, 410073, China

email: 513261490@qq.com

Keywords: vulnerability testing; SMS; Fuzz;

Abstract. Since the mobile network become popular, threats and challenges upon the security of
cellphone are more serious than ever. However, the vulnerability testing methods are limited in the
old white box testing which the manufacturers adopt basing on the knowledge from the original
information of designing the cellphone. There is a new cooperation testing system which is different
from the traditional ones and can run black box testing on any cellphone’s short message module.
This may inspire more testing engineers to be engaged in the vulnerabilities testing of the cellphone.

Introduction
The birth of 3G, 4G and smart phone changed the world. The working style of the society is

transforming from the traditional desktop working and network on computer to cloud computing
and mobile office, which accelerates the speed and efficiency of the society.[1] Because of the
convenience and applicability, the mobile technology tend to be much more popular, ranging from
all kinds of products. At the same time, plenty of new ways to attack the mobile device and local
wireless network are found by hackers. The fast development of the mobile network and the
stressing of the economical benefit made the company focus on speed rather than quality, especially
the work on the safety of the products. Today, the threats and challenges in mobile network is no
less than that of the traditional Internet.

 Most original testing method of the cellphone, especially some safety testing and pressure
testing aiming at the firmware, are done by the manufacturers. They own all the related information
and documents of their products, and as the designers, they are very familiar with the places where
problems always occur. Therefore, this kind of white box testing can be easily done. However, the
shortcomings of this kind of testing are obvious too. First, testing engineers are limited in the few
designers of the phone, which makes the tests slow, narrow and incomplete. This kind of tests can’t
cover all the vulnerabilities. And sometimes the docs with the transcendental knowledge of the
phone can misguide the engineers and make them ignore some places where real vulnerabilities can
hide. Second, because of the differences among the phones, a testing method in company A
probably can’t be effective with a cellphone produced by company B. Third, this kind of testing
focus more of the functional deficiency rather than safety deficiency.

 This article includes a method which can be used to launch fuzz testing for every device which
contains a SMS module.

Analysis of 3GPP message format
 According to the standard 3GPP communication protocol, messages are transmitted by 2 ways

of coding in the mobile network:
 a. Protocol Data Unit
 b. Text Mode
In text mode, the data is simply “as the message is”, while PDU mode need the original payload

be coded in a complicated way and be transmitted through the IMS（IP Multimedia Subsystem）.
The coding process made the message more standard and functional. New added functions include
some simple voice, animation, and all these things need proper configuration of controlling words

International Conference on Materials Engineering and Information Technology Applications (MEITA 2015)

© 2015. The authors - Published by Atlantis Press 662

in the coded message.[2][3] These advantages made the PDU mode the most popular way to
transmit messages. At the same time, various functions and complicated configurations make it
vulnerable too. It is very possible that a mistake of a single bit can turn the message an
unrecognized rubbish, even an evil one which can crash the software. Considering the popularity of
the two mode, this article will aim at the messages transmitted in PDU mode.

From the official docs, we can acquire the specific structure of the message and split it into
several segments. After that, we can give an assessment of each segments and find out how the bad
words can ruin the system, which is the basic factors to help us generate the testing samples. And
then, with the help of our devices, we can control every single bit in each message for test.

Now we will give a brief introduction of the segments in a standard PDU-coded message:
Chart.1 Architecture of RPDU message

RP-Message Type 3 bits
RP-Message Reference 1 octet
RP-Originator Address 1-12 octets
RP-Destination Address 1 octet

RP-User Data <=233 octets

Chart 1 shows the overall structure of a PDU-coded message. RP-MT stands for the type of the

message, RP-MR for some related information of controlling messages between the device and the
base station, RP-OA for the phone number information of sender，RP-DA for phone number
information of receiver，and RP-UD for the real payload of the message.

Chart.2 Specific architecture of the RP-UP part

UDL 1 octet
OA 1-12 octets
PID 1 octet
DCS 1 octet

TIME INFO 7 octet
PAYLOAD_LENGTH 1 octet

PAYLOAD <=140 octets

Chart 2 shows the specific structure of RP-UD.PID and DCS represent protocol identity and
data coding style respectively. TP-VP represents the length of valid period from the base station’s
receiving to the mobile device’s receiving. TIME INFO represents the 7 octets’ information about
when the message is sent by the base station. TP-UD represents the real text content of the message,
while TP-UDL represents the length of the TP-UD. The size of TP-UD can’t exceed 70 Chinese
symbols or 140 letters.

From the analysis of the PDU coding style, we can see:
 First, in this coding style, all the components shows a rather tight relationship, and all the

positions of the segments are defined inside the message itself. For instance, the UDL segment
describes the length of the payload and if the real length don’t match the UDL, then an error will
occur.

 Second, the variation of the controlling segment’s value will have a deep influence in the whole
structure of a message. When the content doesn’t match the controlling segment, the receiving
process may be in chaos and end with an error. For example, PID consist of only 1 byte, while the
different value of PID will have a significant influence on the processing of the payload. When the
last 5 bits of PID is “00100”, the data will be processed as a voice message, and when it is “00111”,
the data will be processed as a video message. Obviously, it is quite easy to get into an error with
the misunderstanding of the payload.

663

After the analysis of the PDU code, we determine to produce the abnormal messages by the
unmatched length of the payload and UDL. At the same time, we will mutate the controlling
variables and produce the final SMS testing samples.

Testing platform
Hardware
For hardware, we mainly rely on the development of SDR(Software Defined Radio), which is a

new kind of wireless broadcasting and communication technology.[4] It is not based on the
traditional hardware RF design, but the wireless communication protocol defined by the elastic
software.

In the system, we will use the RangeNetwork, which is a device integrated with a computer and
a SDR board, to emulate the base station’s operations on the message. This device is developed for
experimental use or construct low power consumption network. First we should install the
OpenBTS suit on the computer and after a few simple steps of configuration, we can do some
emulations of the SMS service with it.

Software
GNU Radio is an open-source SDR suit scripted mainly by Python. A Python script can

configure a RF platform into various kind of sensors. It can detect and analyze signals of vehicles,
WIFI, Bluetooth and so on. So it is a very suitable software for project aiming at SDR development.
If we install OpenBTS on the basis of GNU Radio, the SDR platform will be configured to be a
professional base station tool.

OpenBTS is an interface of GSM based on UNIX. Without the signal of the telephone company,
it can provide standard service for those cellphones which are compatible with GSM, use SDR
platform to emulate the Air Interface(Um), make connections with the standard 2G device, and use
SIP soft switching protocol or PBX to make a call.[5] Recently, the development organization of
OpenBTS is trying to add 3G protocols to the software and make it more useful.

 Based on these hardware and software, we can build a closed testing system in which we can
sending free messages of arbitrary number.

Sample producer and Log system
 The testing system consists of an integrated SDR system, a cellphone to be tested and a central

computer which produces and sends samples to the SDR. We install the UBUNTU LINUX OS,
then GNU RADIO and OpenBTS need to be added.[6] And after all the preparation, we can control
the testing system by simple commands.

 After a period of time, artificial testing show the disadvantages like more errors and low
efficiency. We need to write a script and run the test automatically. Some programs of producing
the samples and sending the commands are installed in the central computer to improve the
performance of the whole system and that works well.

At the same time, a monitor software which can handle the suspicious messages are essential to
the system. We developed an APP on the cellphone which can monitor the whole process of the
receiving of the messages. The APP is able to automatically analysis the state of the cellphone,
judge if there is anything wrong with the thread of message, and save the monitored data to the log
system.

 In details, the monitored objects are several variables of the phone which indicate the state of
the process, including memory, some key data in the CPU. We need to monitor the message thread.
When the thread break down, the samples can be regarded as effective and we can look up to the
binary stream, pause the program for a moment and restart in case the following samples in the
period of shutting down can not be received properly.

The content of the software in the cellphone includes the following modules:
(a) Surveillance
This part is mainly responsible for the running state of the message process. When the process

crash, it will give commands to indicate the controlling center pause the message sending program
and wait for the recovery of the message process. Besides, it will notice the Log module that

664

something is wrong with the message process and ask for making a backup of all the related
variables.

(b) Log
Log part is mainly responsible for the recording of the message which make the system break

down. When an error occurs, Log part will back up the binary data of the message and look up the
variables in memory and CPU so that we can dig up the vulnerabilities which cause the error
afterwards.

(c) Communication
COM part keep connections with the sending computer and guarantee the whole testing system

run simultaneously. The sending computer and the tested phone communicate with each other by
WLAN. Each time the message is sent, the sending part stay quiet and wait for the comfirmation
from the receiver. At the same time, the computer will send the binary data of the message to the
phone by WLAN so that a comparing with the receiving data can be done.

Fig.1 Architecture of the Fuzz testing system

Result
 The following picture shows that the cellphone is receiving massive abnormal messages, and

some of them will be wrongly analyzed and displayed in chaos.
 There are some other interesting discoveries in the experiments. The interval period between the

deliveries of messages can influence the result. A rather short interval period may cause the failure
of receiving or sending. A proper time interval can be obtained by transceiving massive normal
messages before the vulnerability tests. We will choose the least time interval which make the rate
of successful transformation under the tolerance rate.

665

Fig.2 testing samples being sent

Conclusion
 In conclusion, this experiment proves that the FUZZ testing method aiming at the SMS module

of cellphones is feasible and effective. And the fact that some cellphones can’t pass the test
indicates that a deeper research in the protocol of message is necessary.

 In the article, we build a rather elementary FUZZ system and runs some basic and initiative
tests. Except for the normal ones, some samples were filtered directly because of the wrong format,
while the others make the message process break down. These phenomenon proves the rightness of
the method.

But there are still some problems in this project: we can’t figure out what make the process
break down due to the lack of knowledge of the source code of the phone, and the algorithm in
producing the testing samples is rather initiative. I hope these problems can be properly solved in
the future.

References
[1] OpenBTS-4.0-Manual http://openbts.org/

[2] SUTTON M，GREENE A，AMINI P．Fuzzing：brute vulnerabilitydiscovery[M]．[S.1.]：Pearson
Education Inc，2007

[3] OEHLERT P．Violating assumption with fuzzing[J]．IEEE Security and Privacy，2005.

[4] MILLER B P，KOSKI D，LEE C P，et a1．Fuzzing revisted：a reexamination of the reliability
of UNIX utilities and services[R]．Madison：University of Wisconsin Madison，1995．

[5]ANDREA L，LORENZO M，MATTlA M，et a1．A smart fuzzer for x86 executables[C]//Proc
of the 3rd International Workshop on Software Engineering for Secure Systems．[S.1.]：IEEE
Computer Society．2007.

[6] VUAGNOUX M．Autodafe：an act of software torture[EB/OL]．(2006)．

http://autodafe.sourceforge.net/docs/autodafe.pdf.

666

