

Robust Kernel Estimation in Blind Deconvolution
Zhiming Wang1,a, Xing Li1,b

1School of Computer & Communication Engineering, University of Science and Technology Beijing,
100083, Beijing, China

a wangzhiming@ies.ustb.edu.cn, b li_xing_student@sina.com

Keywords: Blind Deconvolution; Kernel Estimation; Normalized Sparsity Measure

Abstract. Due to the loss of information about image and the interference of noise, blind
deconvolution is an ill-posed problem. In this paper, we study this problem based on the algorithm of
Krishnan et al.[1], which uses a normalized sparsity measure to solve the problem. By assuming the
random high frequency property of the difference between true kernel and intermediate estimated
kernel, we add a Gaussian smoothing filtering during sharp image update step. The filtering process
can improve robustness of the algorithm. Experimental results show that our algorithm estimates
more precise kernel and run fast than Krishnan’s original algorithm.

Introduction
Image blurring is caused by many factors, such as the effect of atmosphere, technology problems

of camera, motion, defocus, and so on.
Under supposing of linear position-invariant, a blurred image B can be modeled by the

convolution of a blur kernel k with a sharp image S, along with the addition of the noise N:

B = k⊗S + N. (1)
B is known and both k and S are unknown. Our goal is to estimate the blur kernel k and sharp

image S. Since B can be combined by an infinite number of pairs (k, S), we should use additional
conditions to regular the problem so that we can gain the expected solution.

Recent research in natural image statistics have shown that images obey heavy-tailed
distributions in their gradients[2,3]. We can use this prior knowledge to solve the deconvolution
problem in gradient domain.

A common method is the MAP estimation, which estimates a pair (k, S) by maximizing the
posterior probability:

(k, S) = argmax p(k, S|B). (2)
We usually use the negative logarithm of (2), that is:
(k, S) = argmin –log p(k, S|B). (3)
In next section, we give the processing of MAP estimation a simple presentation.

A simple presentation of MAP estimation
Based on Bayesian probability theory, we have:

posterior ∝ likelihood × prior. (4)

 p(k, S|B) ∝ p(B|k, S) × p(S) × p(k). (5)

where we use the factor: p(k, S) = p(S) × p(k).
so, Eq.3 can be transformed into:
(k, S)=argmin –log p(B|k, S)–log p(S) –log p(k). (6)
We assume that the gradient x of S obeys the distribution:

International Conference on Materials Engineering and Information Technology Applications (MEITA 2015)

© 2015. The authors - Published by Atlantis Press 682

mailto:wangzhiming@ies.ustb.edu.cn

p(𝑥𝑥𝑖𝑖) = 𝛽𝛽1e−𝛽𝛽2|𝑥𝑥𝑖𝑖|𝛼𝛼. (7)

where 𝛽𝛽1 and 𝛽𝛽2 are positive. For simple, we assume every pixel gradient shares the same 𝛽𝛽1 and
𝛽𝛽2, and obeys the independent distribution(i.i.d), So

p(S) = p(x) = ∏ 𝛽𝛽1e−𝛽𝛽2|𝑥𝑥𝑖𝑖|𝛼𝛼i = 𝛽𝛽1e−𝛽𝛽2||𝑥𝑥||𝛼𝛼𝛼𝛼. (8)
where we assume the relation between S and x is one to one.
Also, we assume an i.i.d Gaussian noise N with variance 𝜂𝜂2, so we have:

p(B|k, S) = 1
(√2π𝜂𝜂)n

e−
||𝐵𝐵− 𝑘𝑘⊗𝑆𝑆||2

2

2𝜂𝜂2 . (9)

Finally, we have the expression about Eq.2:

(k, S)=argmin 𝜆𝜆1||𝐵𝐵 − 𝑘𝑘 ⊗ 𝑆𝑆||22 +𝜆𝜆2||𝑥𝑥||𝛼𝛼𝛼𝛼 +𝜆𝜆3G(𝑘𝑘). (10)

G(k) can be ||𝑘𝑘||11. 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 are positive.
Finally, we have the general form:

(k, S)=argmin 𝜆𝜆1||𝐵𝐵 − 𝑘𝑘 ⊗ 𝑆𝑆||22 +𝜆𝜆2J(𝑆𝑆) +𝜆𝜆3G(𝑘𝑘). (11)

Here, J(S) =||𝑥𝑥||𝛼𝛼𝛼𝛼 =||𝛻𝛻𝛻𝛻||𝛼𝛼𝛼𝛼.
For more details, we refer the reader to papers of [4] and [6].
The MAP pair (k, S) should minimize the Eq.11, but as pointed out by Levin et al.[5]and Fergus et

al.[3], blurred image usually has a lower cost than sharp image. MAP objective function attempts to
minimize all gradients (even large ones), so that we usually obtain a blurred image rather than a sharp
image. Therefore, Fergus et al.[3] approximates the full posterior distribution and adopts a variational
Bayesian approach based on the algorithm of [7]. Based on the algorithm of [3], Levin et al.[6]
develops a MAPk estimation that can be optimized easily. But they all are more complex. Krishnan et
al.[1] use a normalized sparsity measure that favors sharp image more than blurred image. Although it
can not be explained clearly in probability theory, it can be understood in the MAP view yet. Our
improvement is based on this algorithm.

Kernel estimation
From Eq.1, B is known and both k and S are unknown. Our goal is to estimate the blur kernel k and

sharp image S. As the way of Fergus et al.[3], we deal with the problem in gradient domain. That is:

𝑓𝑓ℎ ⊗ 𝐵𝐵= k⊗(𝑓𝑓ℎ ⊗ 𝑆𝑆)+𝑛𝑛ℎ, 𝑓𝑓𝑣𝑣 ⊗ 𝐵𝐵= k⊗(𝑓𝑓𝑣𝑣 ⊗ 𝑆𝑆)+𝑛𝑛𝑣𝑣. (12)

{𝑓𝑓ℎ, 𝑓𝑓𝑣𝑣} = {[1,-1],[1,−1]T}.
We denote y = {𝑓𝑓ℎ ⊗ 𝐵𝐵; 𝑓𝑓𝑣𝑣 ⊗ 𝐵𝐵}, x = {𝑓𝑓ℎ ⊗ 𝑆𝑆; 𝑓𝑓𝑣𝑣 ⊗ 𝑆𝑆}, and n = {𝑛𝑛ℎ; 𝑛𝑛𝑣𝑣}, so we have:

y = k⊗x + n (13)
so Eq.11 is transformed into:

(k, x)=argmin 𝜆𝜆1||𝑦𝑦 − 𝑘𝑘 ⊗ 𝑥𝑥||22 +𝜆𝜆2J(𝑥𝑥) +𝜆𝜆3G(𝑘𝑘). (14)
Following Krishnan et al.[1], we use the form:

(k, x)=argmin 𝜆𝜆
′

2
||𝑦𝑦 − 𝑘𝑘 ⊗ 𝑥𝑥||22 +||𝑥𝑥||1

||𝑥𝑥||2
 +𝜓𝜓′||𝑘𝑘||11. (15)

||𝑥𝑥||1
||𝑥𝑥||2

 is a normalized sparsity measure that favors sharp image more than blurred image, and k is
subjected to that ∑ 𝑘𝑘𝑖𝑖i = 1,𝑘𝑘𝑖𝑖≥0. For more details, please read the [1]. We use the iterative method to
estimate k, which alternates between x and k updates. Also we use multi-scale strategy to improve
performance of the algorithm, particularly for a large kernel[3].

x-Update
We update x by the following expression, when the k is fixed:

683

 x=argmin 1
2

||𝑦𝑦 − 𝑘𝑘 ⊗ 𝑥𝑥||22 + ||𝑥𝑥||1
𝜆𝜆′||𝑥𝑥||2

. (16)

This expression can not be optimized easily, because ||𝑥𝑥||1
||𝑥𝑥||2

 is non-convex. However, it can be
transformed into a convex 𝑙𝑙1-regularized problem by fixing the 𝑙𝑙2 norm denominator from previous
iteration[1]. So we solve the problem:

x=argmin 1
2

||𝑦𝑦 − 𝑘𝑘 ⊗ 𝑥𝑥||22 + 1
𝜆𝜆′||𝑥𝑥′||2

 ||𝑥𝑥||1. (17)

𝑥𝑥′ is fixed in the inner iteration. We use ISTA(iterative shrinkage-thresholding algorithm)[8] in
the inner iteration.

Analysis of ISTA and smooth filtering
In the inner iteration of x-update, we have the following procedure:
0:Require: Observed image y, Threshold t, Maximum iterations N, Initial iterate 𝑥𝑥0
1: for j = 0 to N − 1 do
2: v =𝑥𝑥𝑗𝑗 − t𝐾𝐾T(K𝑥𝑥𝑗𝑗 − y)
3: 𝑥𝑥𝑗𝑗+1 = S t𝜆𝜆(𝑣𝑣)
4: end for
5: return: image 𝑥𝑥𝑁𝑁
From Eq.17, λ is 1

𝜆𝜆′||𝐱𝐱′||2
 not 𝜆𝜆′||𝑥𝑥′||2, and K is the convolution matrix of kernel k. We make Δ = tλ,

so t = 𝛥𝛥
𝜆𝜆

. At procedure 0, we require threshold Δ instead of t. From Eq.17, we have t =Δ𝜆𝜆′||𝑥𝑥′||2. S is
the soft shrinkage operation, that is:

S 𝛥𝛥(𝑣𝑣)i = max(|𝑣𝑣𝑖𝑖|-Δ,0)sign(𝑣𝑣𝑖𝑖). (18)
At procedure 2, we use K, which is not the convolution matrix of true kernel. We assume that K +

ek is equal to the convolution matrix of true kernel. So, if we use the true kernel, procedure 2 will
become:

v =𝑥𝑥𝑗𝑗 − t(𝐾𝐾 + 𝑒𝑒𝑒𝑒)T((K+ek)𝑥𝑥𝑗𝑗 − y). (19)
Finally, we have:

v =𝑥𝑥𝑗𝑗 − t𝐾𝐾T(K𝑥𝑥𝑗𝑗 − y) + err. (20)

err = -𝐾𝐾Tek𝑥𝑥𝑗𝑗 -𝑒𝑒𝑒𝑒T((K+ek)𝑥𝑥𝑗𝑗 − y). We assume that err has the high frequency feature, so we add
a Gaussian smoothing filtering f to suppress it. So we should add a procedure after procedure 2. That
is:

v = f ⊗ v. (21)
By Gaussian smoothing filtering, the robustness of the algorithm is improved for different

initialization at kernel k.
k-Update
We update k by the following expression, when the x is fixed:

k=argmin ||𝑦𝑦 − 𝑘𝑘 ⊗ 𝑥𝑥||22 +𝜓𝜓||𝑘𝑘||11. (22)
We use IRLS(Iterative Reweighted Least Squares)[9] to deal with the problem in the outer

iteration. So Eq.22 is transformed into:

k=argmin ||𝑦𝑦 − 𝑘𝑘 ⊗ 𝑥𝑥||22 +𝜓𝜓∑ weighti 𝑘𝑘𝑖𝑖
2

i . (23)

weighti = |𝑘𝑘𝑖𝑖|−1. When 𝑘𝑘𝑖𝑖 is zero, we threshold it.
To solve the Eq.23, we make the derivative of Eq.23 being zero:

2𝑋𝑋T(Xk - y)+2ψWk = 0. (24)

W is the matrix combined by weighti. Finally, we have:

684

 (𝑋𝑋TX +ψW)k = 𝑋𝑋Ty. (25)

These equations can be solved by many iterative algorithms, and we use CG(conjugate
gradient)[10] to solve it in inner. In the process of solving the problem, we can use x ⊗ m = Xm, and
𝑥𝑥 𝑟𝑟⊗ m = 𝑋𝑋Tm, of which 𝑥𝑥 𝑟𝑟 is that x rotates 180°around the center.

Multi-scale strategy
We use multi-scale strategy to improve performance of the algorithm, particularly for a large

kernel. At first, kernel size is 3×3, increases at each scale and becomes the same size as the original
size at the final scale. At the same time, x and y are reduced at the same scale.

In the section experiment, we will consider the different initialization at kernel k.

Image restoration
When the kernel k has been estimated, we can use non-blind deconvolution methods to restore

sharp image S from blurred image B. we solve the following expression:

 S=argmin 𝜆𝜆1||𝐵𝐵 − 𝑘𝑘 ⊗ 𝑆𝑆||22 +||𝛻𝛻ℎ𝑆𝑆||𝛼𝛼𝛼𝛼 +||𝛻𝛻𝑣𝑣𝑆𝑆||𝛼𝛼𝛼𝛼. (26)
We use the method from [2]. This method transforms Eq.26 into a quadratic form using

half-quadratic method[11].

Experimental results
In this section, we present results’ comparing for different initialization of kernel k. We use two

criterions to evaluate the performance. The grayscale images that we use come from:
http://www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html.

Two criterions
First, SNR(Signal Noise Ratio) is defined as:

SNR = 10log10 ||𝑆𝑆||22

||𝑆𝑆−𝑆̂𝑆||22
. (27)

Where S is the known ground truth image, and 𝑆̂𝑆 is the image that we estimate using the estimated
kernel. The value of SNR is the bigger the better.

Second, Error Ratio[5,12] is defined as:

 Error Ratio = ||𝑆𝑆−𝑆̂𝑆𝑘𝑘�||22

||𝑆𝑆−𝑆̂𝑆𝑘𝑘||22
. (28)

Where S is the known ground truth image, 𝑆̂𝑆𝑘𝑘 is the image that we estimate using the known
ground truth kernel k, and 𝑆̂𝑆𝑘𝑘� is the image that we estimate using the estimated kernel 𝑘𝑘�. The value of
Error Ratio is the smaller the better.

Results
We consider the two different initialization of kernel k. The first is [1/2 1/2 0; 0 0 0; 0 0 0], and the

second is [1/9 1/9 1/9; 1/9 1/9 1/9; 1/9 1/9 1/9].
As shown in Fig.1, we use the image ‘20’ and the kernel ‘4’ and ‘8’ from dataset.

Fig.1. Left: the ground truth image; right-top-left: the 27×27 ground truth kernel; right-top-right: the 23×23

ground truth kernel; right-bottom-left: the blurred image of left kernel; right-bottom-right: the blurred image of
right kernel.

Fig.2 shows the results about the 27×27 kernel.

685

Table 1 shows the values of SNR, Error Ratio, and elapsed time about the 27×27 kernel.
Fig.3 shows the results about the 23×23 kernel.
Table 2 shows the values of SNR, Error Ratio, and elapsed time about the 23×23 kernel.

Fig.2. The results of 27×27 kernel. Left-top: the ground truth image; left-bottom: deblurred image using the
ground truth kernel; middle-top: deblurred image using kernel of Krishnan et al. with the first initialization;

middle-bottom: deblurred image using our kernel with the first initialization; right-top: deblurred image using
kernel of Krishnan et al. with the second initialization; right-bottom: deblurred image using our kernel with the

second initialization. Corresponding kernels are shown as insets at the bottom left of each image.
Table 1. Performance comparison on 27×27 kernel.

Algorithm SNR Error Ratio Elapsed Time(s)
Krishnan’s, first initialization 10.29 7.15 218.09
Ours, first initialization 11.53 5.37 214.17
Krishnan’s, second initialization 8.33 11.21 222.23
Ours, second initialization 11.53 5.37 218.46

Fig.3. The results of 23×23 kernel.

Table 2. Performance comparison on 23×23 kernel.
Algorithm SNR Error Ratio Elapsed Time(s)
Krishnan’s, first initialization 9.87 9.63 245.55
Ours, first initialization 12.39 5.40 227.19
Krishnan’s, second initialization 10.47 8.40 236.07
Ours, second initialization 12.38 5.41 228.12

Remarks
From Fig.2 and Table 1, we can see that Krishnan et al. favors the first initialization of kernel.

From Fig.3 and Table 2, we can see that Krishnan et al. favors the second initialization of kernel.
However, our algorithm gives almost the same results and gives better performance than Krishnan’s
algorithm. It means that we improved its robustness. By comparing elapsed times, one can see that
ours runs a little fast than Krishnan’s algorithm.

Fig.4 shows the results of a real-data image provided by Fergus et al.[3]. From that one can see
that our algorithm gives more robust result than Krishnan’s original algorithm with equal parameters.

686

Fig.4. The results of a real-data image. First: the blurred image; second: deblurred image using kernel of

Krishnan et al. with the first initialization; third: deblurred image using our kernel with the first initialization;
fourth: deblurred image using kernel of Krishnan et al. with the second initialization; fifth: deblurred image

using our kernel with the second initialization.

Conclusions
In general, Krishnan’s algorithm gives a good performance in blind image restoration, but

estimation error is inevitable during kernel estimation. By assuming the high frequency property of
this error, we improve robustness of Krishnan’s algorithm by adding a Gaussian smoothing filtering
in sharp image estimation iteration. Experimental results show it is an effective way to guarantee
robustness.

References
[1]D. Krishnan, T. Tay and R. Fergus. Blind deconvolution using a normalized sparsity measure[C].
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011.
[2]D. Krishnan and R. Fergus. Fast image deconvolution using hyper-Laplacian priors[C]. Advances
in Neural Information Processing Systems. 2009.
[3]R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, and W.T. Freeman. Removing camera shake
from a single photograph[J]. ACM Transactions on Graphics (TOG), 2006, 25(3): 787-794.
[4]C. Bishop. Pattern recognition and machine learning[M]. springer, 2006.
[5]A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Understanding and evaluating blind
deconvolution algorithms[C]. IEEE Conference on Computer Vision and Pattern
Recognition(CVPR), 2009.
[6]A. Levin, Y. Weiss, F. Durand, and W. T. Freeman. Efficient marginal likelihood optimization in
blind deconvolution[C]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2011.
[7]J. Miskin and D. J. C. Mackay. Ensemble learning for blind image separation and
deconvolution[M]. Advances in independent component analysis. Springer London, 2000: 123-141.
[8]A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems[J]. SIAM journal on imaging sciences, 2009, 2(1): 183-202.
[9]C. S. Burrus. Iterative Reweighted Least Squares[J]. http://cnx.org/content/m45285/1.12/.
[10]J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain[J],
Carnegie Mellon University, Pittsburgh, PA, 1994.
[11]D. Geman and C. Yang. Nonlinear image recovery with half-quadratic regularization[J]. IEEE
Transactions on Image Processing, 1995, 4(7): 932-946.
[12]T. Michaeli, M. Irani. Blind deblurring using internal patch recurrence[M]. European Conference
on Computer Vision. Springer International Publishing, 2014: 783-798.

687

