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Abstract. Due to the loss of information about image and the interference of noise, blind 
deconvolution is an ill-posed problem. In this paper, we study this problem based on the algorithm of 
Krishnan et al.[1], which uses a normalized sparsity measure to solve the problem. By assuming the 
random high frequency property of the difference between true kernel and intermediate estimated 
kernel, we add a Gaussian smoothing filtering during sharp image update step. The filtering process 
can improve robustness of the algorithm. Experimental results show that our algorithm estimates 
more precise kernel and run fast than Krishnan’s original algorithm. 

Introduction 
Image blurring is caused by many factors, such as the effect of atmosphere, technology problems 

of camera, motion, defocus, and so on. 
Under supposing of linear position-invariant, a blurred image B can be modeled by the 

convolution of a blur kernel k with a sharp image S, along with the addition of the noise N: 

B = k⊗S + N.                                                                                                                                  (1) 
B is known and both k and S are unknown. Our goal is to estimate the blur kernel k and sharp 

image S. Since B can be combined by an infinite number of pairs (k, S), we should use additional 
conditions to regular the problem so that we can gain the expected solution. 

Recent research in natural image statistics have shown that images obey heavy-tailed 
distributions in their gradients[2,3]. We can use this prior knowledge to solve the deconvolution 
problem in gradient domain. 

A common method is the MAP estimation, which estimates a pair (k, S) by maximizing the 
posterior probability: 

(k, S) = argmax p(k, S|B).                                                                                                                (2) 
We usually use the negative logarithm of (2), that is: 
(k, S) = argmin –log p(k, S|B).                                                                                                         (3) 
In next section, we give the processing of MAP estimation a simple presentation. 

A simple presentation of MAP estimation 
Based on Bayesian probability theory, we have: 

posterior ∝ likelihood × prior.                                                                                                      (4) 

 p(k, S|B) ∝ p(B|k, S) × p(S) × p(k).                                                                                               (5) 

where we use the factor: p(k, S) = p(S) × p(k). 
so, Eq.3 can be transformed into: 
(k, S)=argmin –log p(B|k, S)–log p(S) –log p(k).                                                                           (6) 
We assume that the gradient x of S obeys the distribution: 
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p(𝑥𝑥𝑖𝑖) = 𝛽𝛽1e−𝛽𝛽2|𝑥𝑥𝑖𝑖|𝛼𝛼.                                                                                                                        (7) 

where 𝛽𝛽1 and 𝛽𝛽2 are positive. For simple, we assume every pixel gradient shares the same 𝛽𝛽1 and 
𝛽𝛽2, and obeys the independent distribution(i.i.d), So 

p(S) = p(x) = ∏ 𝛽𝛽1e−𝛽𝛽2|𝑥𝑥𝑖𝑖|𝛼𝛼i  = 𝛽𝛽1e−𝛽𝛽2||𝑥𝑥||𝛼𝛼𝛼𝛼.                                                                                    (8) 
where we assume the relation between S and x is one to one. 
Also, we assume an i.i.d Gaussian noise N with variance 𝜂𝜂2, so we have: 

p(B|k, S) = 1
(√2π𝜂𝜂)n

e−
||𝐵𝐵− 𝑘𝑘⊗𝑆𝑆||2

2

2𝜂𝜂2 .                                                                                                       (9) 

Finally, we have the expression about Eq.2: 

(k, S)=argmin 𝜆𝜆1||𝐵𝐵 −  𝑘𝑘 ⊗ 𝑆𝑆||22 +𝜆𝜆2||𝑥𝑥||𝛼𝛼𝛼𝛼 +𝜆𝜆3G(𝑘𝑘).                                                                 (10) 

G(k) can be ||𝑘𝑘||11. 𝜆𝜆1, 𝜆𝜆2 and 𝜆𝜆3 are positive. 
Finally, we have the general form: 

(k, S)=argmin 𝜆𝜆1||𝐵𝐵 −  𝑘𝑘 ⊗ 𝑆𝑆||22 +𝜆𝜆2J(𝑆𝑆) +𝜆𝜆3G(𝑘𝑘).                                                                    (11) 

Here, J(S) =||𝑥𝑥||𝛼𝛼𝛼𝛼 =||𝛻𝛻𝛻𝛻||𝛼𝛼𝛼𝛼. 
For more details, we refer the reader to papers of [4] and [6]. 
The MAP pair (k, S) should minimize the Eq.11, but as pointed out by Levin et al.[5]and Fergus et 

al.[3], blurred image usually has a lower cost than sharp image. MAP objective function attempts to 
minimize all gradients (even large ones), so that we usually obtain a blurred image rather than a sharp 
image. Therefore, Fergus et al.[3] approximates the full posterior distribution and adopts a variational 
Bayesian approach based on the algorithm of [7]. Based on the algorithm of [3], Levin et al.[6] 
develops a MAPk estimation that can be optimized easily. But they all are more complex. Krishnan et 
al.[1] use a normalized sparsity measure that favors sharp image more than blurred image. Although it 
can not be explained clearly in probability theory, it can be understood in the MAP view yet. Our 
improvement is based on this algorithm. 

Kernel estimation 
From Eq.1, B is known and both k and S are unknown. Our goal is to estimate the blur kernel k and 

sharp image S. As the way of Fergus et al.[3], we deal with the problem in gradient domain. That is: 

𝑓𝑓ℎ ⊗ 𝐵𝐵= k⊗(𝑓𝑓ℎ ⊗ 𝑆𝑆)+𝑛𝑛ℎ, 𝑓𝑓𝑣𝑣 ⊗ 𝐵𝐵= k⊗(𝑓𝑓𝑣𝑣 ⊗ 𝑆𝑆)+𝑛𝑛𝑣𝑣.                                                              (12) 

{𝑓𝑓ℎ, 𝑓𝑓𝑣𝑣} = {[1,-1],[1,−1]T}. 
We denote y = {𝑓𝑓ℎ ⊗ 𝐵𝐵; 𝑓𝑓𝑣𝑣 ⊗ 𝐵𝐵}, x = {𝑓𝑓ℎ ⊗ 𝑆𝑆; 𝑓𝑓𝑣𝑣 ⊗ 𝑆𝑆}, and n = {𝑛𝑛ℎ; 𝑛𝑛𝑣𝑣}, so we have: 

y = k⊗x + n                                                                                                                                  (13) 
so Eq.11 is transformed into: 

(k, x)=argmin 𝜆𝜆1||𝑦𝑦 −  𝑘𝑘 ⊗ 𝑥𝑥||22 +𝜆𝜆2J(𝑥𝑥) +𝜆𝜆3G(𝑘𝑘).                                                                    (14) 
Following Krishnan et al.[1], we use the form: 

(k, x)=argmin 𝜆𝜆
′

2
||𝑦𝑦 −  𝑘𝑘 ⊗ 𝑥𝑥||22 +||𝑥𝑥||1

||𝑥𝑥||2
 +𝜓𝜓′||𝑘𝑘||11.                                                                       (15) 

||𝑥𝑥||1
||𝑥𝑥||2

 is a normalized sparsity measure that favors sharp image more than blurred image, and k is 
subjected to that ∑ 𝑘𝑘𝑖𝑖i  = 1,𝑘𝑘𝑖𝑖≥0. For more details, please read the [1]. We use the iterative method to 
estimate k, which alternates between x and k updates. Also we use multi-scale strategy to improve 
performance of the algorithm, particularly for a large kernel[3]. 

x-Update 
We update x by the following expression, when the k is fixed: 
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  x=argmin 1
2

||𝑦𝑦 −  𝑘𝑘 ⊗ 𝑥𝑥||22 + ||𝑥𝑥||1
𝜆𝜆′||𝑥𝑥||2

.                                                                                           (16) 

This expression can not be optimized easily, because ||𝑥𝑥||1
||𝑥𝑥||2

 is non-convex. However, it can be 
transformed into a convex 𝑙𝑙1-regularized problem by fixing the 𝑙𝑙2 norm denominator from previous 
iteration[1]. So we solve the problem: 

x=argmin 1
2

||𝑦𝑦 −  𝑘𝑘 ⊗ 𝑥𝑥||22 + 1
𝜆𝜆′||𝑥𝑥′||2

 ||𝑥𝑥||1.                                                                                (17) 

𝑥𝑥′ is fixed in the inner iteration. We use ISTA(iterative shrinkage-thresholding algorithm)[8] in 
the inner iteration. 

Analysis of ISTA and smooth filtering 
In the inner iteration of x-update, we have the following procedure: 
0:Require: Observed image y, Threshold t, Maximum iterations N, Initial iterate 𝑥𝑥0 
1: for j = 0 to N − 1 do 
2: v =𝑥𝑥𝑗𝑗 − t𝐾𝐾T(K𝑥𝑥𝑗𝑗 − y) 
3: 𝑥𝑥𝑗𝑗+1 = S t𝜆𝜆(𝑣𝑣) 
4: end for 
5: return: image 𝑥𝑥𝑁𝑁 
From Eq.17, λ is 1

𝜆𝜆′||𝐱𝐱′||2
 not 𝜆𝜆′||𝑥𝑥′||2, and K is the convolution matrix of kernel k. We make Δ = tλ, 

so t = 𝛥𝛥
𝜆𝜆 

. At procedure 0, we require threshold Δ instead of t. From Eq.17, we have t =Δ𝜆𝜆′||𝑥𝑥′||2. S is 
the soft shrinkage operation, that is: 

S 𝛥𝛥(𝑣𝑣)i = max(|𝑣𝑣𝑖𝑖|-Δ,0)sign(𝑣𝑣𝑖𝑖).                                                                                                  (18) 
At procedure 2, we use K, which is not the convolution matrix of true kernel. We assume that K + 

ek is equal to the convolution matrix of true kernel. So, if we use the true kernel, procedure 2 will 
become: 

v =𝑥𝑥𝑗𝑗 − t(𝐾𝐾 + 𝑒𝑒𝑒𝑒)T((K+ek)𝑥𝑥𝑗𝑗 − y).                                                                                             (19) 
Finally, we have: 

v =𝑥𝑥𝑗𝑗 − t𝐾𝐾T(K𝑥𝑥𝑗𝑗 − y) + err.                                                                                                         (20) 

err = -𝐾𝐾Tek𝑥𝑥𝑗𝑗 -𝑒𝑒𝑒𝑒T((K+ek)𝑥𝑥𝑗𝑗 − y). We assume that err has the high frequency feature, so we add 
a Gaussian smoothing filtering f to suppress it. So we should add a procedure after procedure 2. That 
is: 

v = f ⊗ v.                                                                                                                                      (21) 
By Gaussian smoothing filtering, the robustness of the algorithm is improved for different 

initialization at kernel k. 
k-Update 
We update k by the following expression, when the x is fixed: 

k=argmin ||𝑦𝑦 −  𝑘𝑘 ⊗ 𝑥𝑥||22 +𝜓𝜓||𝑘𝑘||11.                                                                                           (22) 
We use IRLS(Iterative Reweighted Least Squares)[9] to deal with the problem in the outer 

iteration. So Eq.22 is transformed into: 

k=argmin ||𝑦𝑦 −  𝑘𝑘 ⊗ 𝑥𝑥||22 +𝜓𝜓∑ weighti 𝑘𝑘𝑖𝑖
2

i .                                                                            (23) 

weighti = |𝑘𝑘𝑖𝑖|−1. When 𝑘𝑘𝑖𝑖 is zero, we threshold it. 
To solve the Eq.23, we make the derivative of Eq.23 being zero: 

2𝑋𝑋T(Xk - y)+2ψWk = 0.                                                                                                              (24) 

W is the matrix combined by weighti. Finally, we have: 
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 (𝑋𝑋TX +ψW)k = 𝑋𝑋Ty.                                                                                                                   (25) 

These equations can be solved by many iterative algorithms, and we use CG(conjugate 
gradient)[10] to solve it in inner. In the process of solving the problem, we can use x ⊗ m = Xm, and 
𝑥𝑥 𝑟𝑟⊗ m = 𝑋𝑋Tm, of which 𝑥𝑥 𝑟𝑟 is that x rotates 180°around the center.  

Multi-scale strategy 
We use multi-scale strategy to improve performance of the algorithm, particularly for a large 

kernel. At first, kernel size is 3×3, increases at each scale and becomes the same size as the original 
size at the final scale. At the same time, x and y are reduced at the same scale. 

In the section experiment, we will consider the different initialization at kernel k. 

Image restoration 
When the kernel k has been estimated, we can use non-blind deconvolution methods to restore 

sharp image S from blurred image B. we solve the following expression: 

 S=argmin 𝜆𝜆1||𝐵𝐵 −  𝑘𝑘 ⊗ 𝑆𝑆||22 +||𝛻𝛻ℎ𝑆𝑆||𝛼𝛼𝛼𝛼 +||𝛻𝛻𝑣𝑣𝑆𝑆||𝛼𝛼𝛼𝛼.                                                                     (26) 
We use the method from [2]. This method transforms Eq.26 into a quadratic form using 

half-quadratic method[11]. 

Experimental results 
In this section, we present results’ comparing for different initialization of kernel k. We use two 

criterions to evaluate the performance. The grayscale images that we use come from: 
http://www.wisdom.weizmann.ac.il/~vision/BlindDeblur.html. 

Two criterions 
First, SNR(Signal Noise Ratio) is defined as: 

SNR = 10log10 ||𝑆𝑆||22

||𝑆𝑆−𝑆̂𝑆||22
.                                                                                                                (27) 

Where S is the known ground truth image, and 𝑆̂𝑆 is the image that we estimate using the estimated 
kernel. The value of SNR is the bigger the better. 

Second, Error Ratio[5,12] is defined as: 

 Error Ratio = ||𝑆𝑆−𝑆̂𝑆𝑘𝑘�||22

||𝑆𝑆−𝑆̂𝑆𝑘𝑘||22
.                                                                                                                 (28) 

Where S is the known ground truth image, 𝑆̂𝑆𝑘𝑘 is the image that we estimate using the known 
ground truth kernel k, and  𝑆̂𝑆𝑘𝑘�  is the image that we estimate using the estimated kernel 𝑘𝑘�. The value of 
Error Ratio is the smaller the better. 

Results 
We consider the two different initialization of kernel k. The first is [1/2 1/2 0; 0 0 0; 0 0 0], and the 

second is [1/9 1/9 1/9; 1/9 1/9 1/9; 1/9 1/9 1/9]. 
As shown in Fig.1, we use the image ‘20’ and the kernel ‘4’ and ‘8’ from dataset. 

 
Fig.1. Left: the ground truth image; right-top-left: the 27×27 ground truth kernel; right-top-right: the 23×23 

ground truth kernel; right-bottom-left: the blurred image of left kernel; right-bottom-right: the blurred image of 
right kernel. 

Fig.2 shows the results about the 27×27 kernel. 
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Table 1 shows the values of SNR, Error Ratio, and elapsed time about the 27×27 kernel. 
Fig.3 shows the results about the 23×23 kernel. 
Table 2 shows the values of SNR, Error Ratio, and elapsed time about the 23×23 kernel. 

 
Fig.2. The results of 27×27 kernel. Left-top: the ground truth image; left-bottom: deblurred image using the 
ground truth kernel; middle-top: deblurred image using kernel of Krishnan et al. with the first initialization; 

middle-bottom: deblurred image using our kernel with the first initialization; right-top: deblurred image using 
kernel of Krishnan et al. with the second initialization; right-bottom: deblurred image using our kernel with the 

second initialization. Corresponding kernels are shown as insets at the bottom left of each image. 
Table 1. Performance comparison on 27×27 kernel. 

Algorithm SNR Error Ratio Elapsed Time(s) 
Krishnan’s, first initialization 10.29 7.15 218.09 
Ours, first initialization 11.53 5.37 214.17 
Krishnan’s, second initialization 8.33 11.21 222.23 
Ours, second initialization 11.53 5.37 218.46 

 
Fig.3. The results of 23×23 kernel. 

Table 2. Performance comparison on 23×23 kernel. 
Algorithm SNR Error Ratio Elapsed Time(s) 
Krishnan’s, first initialization 9.87 9.63 245.55 
Ours, first initialization 12.39 5.40 227.19 
Krishnan’s, second initialization 10.47 8.40 236.07 
Ours, second initialization 12.38 5.41 228.12 

Remarks 
From Fig.2 and Table 1, we can see that Krishnan et al. favors the first initialization of kernel. 

From Fig.3 and Table 2, we can see that Krishnan et al. favors the second initialization of kernel. 
However, our algorithm gives almost the same results and gives better performance than Krishnan’s 
algorithm. It means that we improved its robustness. By comparing elapsed times, one can see that 
ours runs a little fast than Krishnan’s algorithm. 

Fig.4 shows the results of a real-data image provided by Fergus et al.[3]. From that one can see 
that our algorithm gives more robust result than Krishnan’s original algorithm with equal parameters. 
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Fig.4. The results of a real-data image. First: the blurred image; second: deblurred image using kernel of 

Krishnan et al. with the first initialization; third: deblurred image using our kernel with the first initialization; 
fourth: deblurred image using kernel of Krishnan et al. with the second initialization; fifth: deblurred image 

using our kernel with the second initialization. 

Conclusions 
In general, Krishnan’s algorithm gives a good performance in blind image restoration, but 

estimation error is inevitable during kernel estimation. By assuming the high frequency property of 
this error, we improve robustness of Krishnan’s algorithm by adding a Gaussian smoothing filtering 
in sharp image estimation iteration. Experimental results show it is an effective way to guarantee 
robustness. 
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