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Abstract. In the paper, we propose a novel ordinal regression method called minimum class variance 
support vector ordinal regression (MCVSVOR). MCVSVOR is derived from minimum class 
variance support vector machine (MCVSVM) which is a variant of SVM, and so inherits the latter’s 
characteristics such as taking the distribution of the categories into consideration and good 
generalization performance. Finally, the experimental results validate the effectiveness of 
MCVSVOR and indicate its superior generalization performance over SVOR. 

1. Introduction 
In the practical applications of machine learning, a situation is frequently involved, i.e. exhibiting 

an order among the different categories. This type of supervised learning problems is referred to as 
ordinal regression which predicts categories of ordinal scale [2-4]. Different from traditional metric 
regression problems, its grades are usually discrete and finite. Also, it differs from traditional 
classification problems in that there is an ordinal relationship among different classes. In fact, ordinal 
regression shows resemblance to both regression and classification because labels are discrete and 
ordinal [12]. 

In the past decade, many methods have been proposed to deal with the ordinal regression problems 
[1, 9, 13]. Support vector ordinal regression (SVOR) is a powerful method which is designed to tackle 
the ordinal regression problems and originated in support vector machine (SVM). However, SVM is 
actually a local method in the sense that solution is exclusively determined by support vectors 
whereas all other data points are irrelevant to the decision hyperplane, i.e., the SVM solution does not 
take into consideration the distribution of the categories and may result in a non-robust solution [16]. 
In order to overcome the drawback of SVM, a modified class of SVM called minimum class variance 
support vector machine (MCVSVM) was presented in [16]. This method is inspired from the 
optimization of Fisher’s discriminant ratio [5]. Similar to SVM, MCVSVM implements the large 
margin principle [15]. However, unlike SVM, the solution of MCVSVM takes into consideration 
both the samples in the boundaries and the distribution of the categories and gives a robust solution. 

In this paper, we propose a novel ordinal regression learning method called minimum class 
variance ordinal regression (MCVSVOR) in which the distribution of the categories is explicitly 
considered and the large margin principle is embodied. Following the basic idea of SVOR, we define 
the MCVSVOR optimization problem. Since MCVSVOR is derived from MCVSVM, it inherits the 
latter’s characteristics such as taking fully the distribution of the categories into consideration and 
embodying the large margin principle. At the same time, we also develop the linear and nonlinear 
cases of MCVSVOR and analyze the relationship between MCVSVOR and SVR. The relationship 
shows that MCVSVOR can be solved using the existing SVOR software, which makes the solution 
easy to be computed. Finally, the experimental results indicate that MCVSVOR is effective and can 
get superior generalization performance over SVOR.  
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2. Related work 
In this paper, we consider an ordinal regression problem with r  ordered categories which are 

denoted by consecutive integers {1, , }Y r=   to keep the known rank information. The training 
dataset is represented by {( , y ) | , y }j j j d j

i iD R Y= ∈ ∈x x , where j
ix  refers to the ith sample in the j-th 
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2.1 Support vector ordinal regression 

The task of ordinal regression is to compute a function : {1, , }f R r→   such that ( )j j
if y=x  [10, 

11]. Moreover, SVOR aims at finding 1r −  parallel discriminant hyperplanes 
0 ( 1, , )T

jb j r− = = w x  that separate the data points of different ranks. So, the following 
optimization problem is defined [3,4] 
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Where 1 ,j r=   and 1, , ji N=  . Here, two auxiliary variables 0b = −∞  and +rb = ∞  are 
introduced. Note, SVM implements the large margin principle [14]. So, SVOR also embodies the 
principle since it is derived from SVM. 
2.2 Kernel discriminant learning for ordinal regression 

For the above given training dataset, the within-class scatter matrix WS  is defined as [5, 12] 
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u x  is the mean sample vector of jX , and T  

denotes vector transpose. Here, jN  is the cardinality of jX . KDLOR defines the following 
optimization [12] 
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3. Minimum class variance support vector ordinal regression 
Following the idea of SVOR, in the linear case we define the primal optimization problem of 

MCVSVOR as follows 
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Where 1 ,j r=  , 1, , ji N=  , and WS  is the within-class scatter matrix which is defined as (2). 
Similar to MCVSVM, by this way, the distribution of the categories is taken fully into consideration. 

895



 

Besides, the proposed method embodies the large margin principle since it is derived from 
MCVSVM which implements large margin principle [15]. So, it is different from KDLOR although 
they both take the distribution of the categories into consideration. 

Similar to SVOR, the primal optimization problem of MCVSVOR can be efficiently solved by its 
dual optimization problem. Obviously, (4) is a quadratic programming problem. The primal 
Lagrangian (4) is 
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rγ γ=γ  are the Lagrangian multipliers for the constraints of (4). By differentiating with 
respect to w , ξ , *ξ  and b  and using the Karush-Kuhn-Tucker (KKT) conditions, the following 
holds 
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If the matrix WS  is nonsingular or invertible, we have 
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As in MCVSVM and KDLOR, MCVSVOR may encounter the singularity problem of WS  since 
its inverse matrix is necessary, which often occurs in the case where the number of samples is smaller 
than the dimensionality of the samples. To solve this singularity problem, similar to KDLOR, we can 
employ the regularization method [5, 6, 7] which is to add a constant 0r >  to the diagonal elements 
of WS  as W W r= +S S I , where I  is an identity matrix. The optimum value of r  can be estimated 
through a cross validation method. 

By replacing (6) into (5) and using the KKT conditions, the constraint optimization problem (4) is 
reformulated to the Wolf dual problem 
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Where j  runs over 1, , 1r − . This is a convex quadratic programming problem and similar to the 
dual optimization problem of SVOR. Suppose *{ , , }α α γ  is the solution of the above optimization 
problem, w  is obtained from (7), and so the discriminant function value for a new input vector x  is 

896



 

1 * * 1

1 1 1 1
( ) ( ) ( )( )

j jT
r N r N

T j j j j j j T
W i i i i i i W

j i j i
f α α α α− −

= = = =

 
= = − = − 

 
∑∑ ∑∑x w x S x x x S x                                           (9) 

Thus, the predictive ordinal decision function is given by 
min arg{ : ( ) }i

i
i f b<x                                                                                                            (10) 

4. Experiments 

4.1 Synthetic dataset 
As is shown in Fig.1, the synthetic dataset includes three ordinal categories and each category 

consists in 100 samples. In this experiment, the kernel function 2( , ) exp( || || )k γ= − −x y x y  is 
adopted. The experimental result is illustrated in Fig.1. It is can be found that the samples can be 
arranged orderly by the hyperplane generated by MCVSVOR, i.e., the samples with the same rank is 
classified in same bin by MCVSVOR. The experimental result validates the effectiveness of the 
proposed method. 
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Illustration of the decision hyperplane generated by MCVSVOR 

4.2 Benchmark datasets 
In order to evaluate the performance of the proposed method, in this section the experimental 

results on several benchmark datasets, which were used in [4] and [12], will be reported. A summary 
of the characteristics of the selected datasets are presented in Table 1. For each dataset, the target 
values were discretized into ten ordinal quantities using equal-frequency binning. Each dataset was 
randomly partitioned into training/test splits as specified in Table 1. The partitioning was repeated 20 
times independently. The input vectors were normalized to zero mean and unit variance, 
coordinate-wise. 

Table 1 Characteristics of the selected datasets. 

Datasets No. of Attributes No. of Training Samples No. of Test Samples 
Pyridimines 27 50 24 

Machine CPU 6 150 59 
Boston Housing 13 300 206 

Abalone 8 1000 3177 
Bank 32 3000 5192 

Computer 21 4000 4192 
California 8 5000 15640 

Census 16 16784 16784 
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5. Conclusion 
In this paper, we propose a novel ordinal regression method called MCVSVOR. Different from 

traditional SVOR which is obtained by extending SVM to tackle the ordinal regression problems, the 
proposed method is derived from MCVSVM and inherits its merits such as good robustness and 
generalization ability. The experimental results indicate the effectiveness of MCVSVOR by 
comparing it with the traditional regression methods SVOR and KDLOR. 
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