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Abstract. A parallel algorithm for terrain generation based on CUDA architecture is proposed in 
this paper, which aims to address the problems of high computational load and low efficiency when 
generating large scale terrains using the Perlin noise superposition method. The Perlin noise 
superposition method is combined with independent calculation of each point based on the 
characteristics of all adjacent points. The Perlin noise value of each terrain grid point is transferred 
to a GPU thread for calculation, so that the terrain generation process is executed in completely 
parallel in the GPU. Experimental results show that The GPU algorithm generates a grid of size 
25000000 (25 million grid points) needs only 0.6355 s, while the original CPU algorithm takes 
23.3723 s, so, the parallel processing algorithm can improve the efficiency of the terrain generation 
and meet the requirements for large-scale terrain generation compared with the original algorithm. 

Introduction 
Three-dimensional terrain is one of the most fundamental and important technology in the 

development visualization system[1], and widely applied in the area of Geographic Information 
System(GIS), Virtual Reality(VR), Synthetic Natural Environment(SNE), flight simulators, and 
even in the Vehicle Terrain Measurement System(VTMS)[2-4]. At present, a simulation method 
based on the digital elevation model (DEM) and terrain generation algorithms based on fractal 
theory is commonly used to generate terrain [5,6], such as the random midpoint displacement 
method[7,8], Perlin noise superposition method[9,10], and so on. The Perlin noise function was 
proposed by Ken Perlin in 1985[11] and was improved in 2002[12]. The Perlin noise has been used 
in many fields, such as generation of emotional expressions in a robot[13-15], traffic generator[16], 
simulation of oxide textures[17], simulation of breast tissue[18], music generation system[19], and 
generation of procedural terrain[9,10,20]. The Perlin noise superposition, is widely used as that it 
can flexibly generate different terrains to meet various needs. However, there are some huge 
domains, such as catchments, mountains or gorges, where an accurate digital terrain model is 
required to mimic the complex topography of the terrain[21]. It means a large amount of data, 
complicated computing processes, and a longer execution time. 

To address this problem, a parallel algorithm for terrain generation using the Perlin noise 
superposition method based on Compute Unified Device Architecture(CUDA) architecture was 
proposed in this paper. Initialization of the gradient search sequence is generated with the CPU and 
the Perlin noise value of each terrain mesh point is calculated within a thread that is executed in the 
GPU. Therefore, the terrain height value calculation is completely accomplished in the GPU which 
significantly improves the speed of terrain data generation. The Perlin noise terrain generation 
method is explained in further detail in the next section. The third section describes the terrain 
generation process of the parallel algorithm. In the fourth section, the results of experiments are 
analyzed to compare the efficiency of the two different algorithms to generate terrains of different 
scales. The fifth section generalizes and summarizes the work presented in this paper and finally 
draws a conclusion. 
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Perlin noise terrain generation method 
The algorithm is based on the fact that the height of each terrain grid point can be generated 

using superposition of different frequencies and amplitudes of the Perlin noise value. A modified 
process of the Perlin noise terrain generation algorithm is demonstrated as follows.  

A. Generate a sequence of positive integers: S (1~n) [in this article, n=256. 
( )niiSi ,...,2,1== ], 

B. Find the sequence G according to the S gradient generation, nLG 2= , 
First, de-serialize the sequence using the random exchange method, i.e. choosing any random 

index location in the sequence between the initial position and the end position and then exchange 
the values: ji SS ↔ { ]_)(1[ MAXRADNrandnj ×+= ni ,...,2,1= }.  

Then, G can be generated from the de-serialized sequence S, as shown in Equation (1) 
inii SGG == +                                       (1) 

C. Set point ( )'''' ,, zyxP , +∈Rzyx ''' ,, , 0>freq , 0>amp . Calculating the Perlin noise value of 
this point. 

① Get ( )zyxP ,,  from point P using Equation (2):  









•−•=
•−•=
•−•=

]'['
]'['
]'['

freqzfreqzz
freqyfreqyy
freqxfreqxx

                                 (2) 

② Get the gradient value of 8 different points ( )iiii zyxP ,,  near point P using the sequence G. 
{ }8,...,3,2,1∈i , 1−=α , { }α+∈ xxxi , , { }α+∈ yyyi , , { }α+∈ zzzi ,  
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Then, the search value m  of point iP  can be determined using the following formula: 
( )( )( )ZYXfffm ++=                                      (4) 

Order 15∧= mh . Then, the gradient value of this point can be calculated using Equation (5). 
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8,...,3,2,1=i , 1=α , { }α+∈ xxxi , , { }α+∈ yyyi , , { }α+∈ zzzi , .   
The corresponding relationship between an adjacent point iP  and the gradient value ig  is as 

shown in Table 1. 
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Tab.1 Adjacent points and their corresponding gradients 
i Pi gi 
1 (x, y, z) g1 
2 (x-1, y, z) g2 
3 (x, y-1, z) g3 
4 (x-1, y-1, z) g4 
5 (x, y, z-1) g5 
6 (x-1, y, z-1) g6 
7 (x, y-1, z-1) g7 
8 (x-1, y-1, z-1) g8 

 
③ First, get smooth values of x, y and z using a smoothing function, as shown in formula(6), 
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 Then, get the Perlin noise Lz using the following interpolation method, which uses an interpolation 
function to get the eight gradient values and the smooth values u, v and w. 
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D. Set +∈NOctave , then get the Perlin noise value as the sum of points P. The evaluation process 
is as follows: 

Order freq = 4, amp =1, octaves= 8; sum = 0;  
While octaves > 0 

sum = sum + Lz  
freq = freq * 2 
amp = amp * 1/2 
octaves = octaves - 1 

End 
Figure 1 shows that the generated terrain through rendering data resulting from step (4) (100 * 

100 mesh). 

 
Fig.1 The graph of terrain generated by Perlin noise superposition (100*100) 
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Terrain generation parallel algorithm 

 
Fig.2 Graph of the GPU thread and its corresponding terrain of grid points 

In the original algorithm, the height value of each point is obtained by calculating the Perlin 
noise value of that point, and calculation of each point is not related to calculation of other adjacent 
points. The parallel algorithm method described in this paper assigns each thread in the CUDA 
thread block to a terrain of grid points, as shown in Figure 2, and then calculates the Perlin noise 
value of this point in each thread. The final result will be written back to the CPU to be saved.  
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Fig.3The graph of CPU and GPU function module 

 
The parallel algorithm requires that the CPU and GPU must work jointly, and they are 

responsible for different functional areas. As shown in Fig.3, controlling operations are done by 
CPU, and a large number of calculations are completed through the multi-threaded parallel 
computing work with GPU. The specific process description of the parallel algorithm is as follows: 

parallelization 
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CPU end application memory and its initialization data 
Step1 Allocate CPU memory: terrain mesh point height value array data[row * column] 

(row * column for terrain mesh point total) 
Allocate GPU end memory: gradient array dev_G [2n] (n = 256), with the GPU end 
terrain data corresponding to the grid array dev_data [row * column] 

Step2 Generate a sequence of positive integers: S (1~n). ( 256=n ) 
Step3 Determine sequence G based on the S gradient generation, using the method in 2 (2) 

nLG 2=  and write the result in dev_G[2n] 
Step4 Invoke the GPU end kernel function. 

Start threads with a total number of blockNum * threadNum = row *, each 
corresponding to a grid point, and then calculate the Perlin noise value of each point. 

Step5 dev_data→data  
Write the results back to the CPU and release the memory for the data e.g. dev_data, 
dev_G, etc. 

Calculate Perlin noise value of the corresponding terrain mesh point through GPU execution 
Step1 Get the present thread tid = threadIdx.x +blockIdx.x*blockDim 
Step2 If tid > blockNum*threadNum, then back or execute step3 
Step3 Execute 2(4), save the calculation results in dev_data[tid] i.e. dev_data[tid]=sum. 

Experimental results and analysis 
Thirty experiments to generate different sizes of grid terrains were carried out on both the GPU 

Parallel algorithm and the CPU original algorithm. The experimental hardware environment was as 
follows: the processor used was Intel (R) Core (TM) i5-3470, with 3.2GHz CPU and 3.47 GB of 
memory, the graphics card was NVIDIA GeForce GT620 and the software environment: QT/C + + 
and CUDA/C. 

The average time taken to generate different grid sizes using the two algorithms is presented in 
Table 2. This data was used to generate the elapsed time contrast diagram which is shown in Figure 
4. This graph shows that when the local grid scale is small, the GPU algorithm is more 
time-consuming than the CPU algorithm. This is mainly because most of the time is spent doing the 
data transfer between the CPU and GPU although less time is taken for the calculation. The original 
algorithm can be done rapidly by the CPU and the no benefit from parallel computing is observed. 
However, as the grid scale increases, the time taken to complete the original algorithm grows 
approximately exponentially, while the time taken to complete the parallel algorithm grows 
approximately linearly. The GPU algorithm generates a grid of size 25000000 (25 million grid 
points) in 0.6355 s, while the original CPU algorithm takes 23.3723 s. Therefore, the GPU parallel 
algorithm is more efficient than the original CPU algorithm for generation of large scale terrain 
meshes. 
Tab.2 Time comparison for generation of different mesh sizes using the CPU and GPU algorithms 

Terrain grid 
number(n) 

log10(n) Time 
Taken-CPU(s) 

Time 
Taken-GPU(s) 

40000 4.6021 0.0369 0.0517 
160000 5.2041 0.1482 0.0559 
360000 5.5563 0.3340 0.0606 
640000 5.8062 0.5929 0.0689 
1000000 6.0000 0.9287 0.0770 
4000000 6.6021 3.7359 0.1529 
9000000 6.9542 8.3634 0.2691 
16000000 7.2041 14.8535 0.4227 
25000000 7.3979 23.3723 0.6355 
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Fig.4 Graph showing time comparison of the two algorithms 

Conclusion 
This article firstly introduced an algorithm to generate terrain using Perlin noise. A terrain 

generation parallel algorithm based on CUDA architecture was then proposed which combined the 
characteristics of the original algorithm with parallel processing. The height value of each point in 
the terrain grid is transferred to the corresponding GPU parallel thread where it is executed. 
Comparison of the times taken to generate different sizes of terrain grid using both algorithms 
shows that the proposed algorithm achieves much faster speed at larger terrain sizes, which satisfies 
requirements for generating massive terrains. 
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