
A Parallel Algorithm Using Perlin Noise Superposition Method for Terrain
Generation Based on CUDA architecture

Huailiang Li 1,a, Xianguo Tuo 1,2, Yao Liu1, Xin Jiang 2
1Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory ,Southwest

University of Science and Technology, Mianyang 621010, China ;
2State Key Laboratory of Geohazard Prevention & Geoenvironmental Protection, Chengdu

University of Technology, Chengdu 610059, China
ali-huai-liang@163.com

Keywords: Perlin Noise, CUDA, GPU, Terrain generation

Abstract. A parallel algorithm for terrain generation based on CUDA architecture is proposed in
this paper, which aims to address the problems of high computational load and low efficiency when
generating large scale terrains using the Perlin noise superposition method. The Perlin noise
superposition method is combined with independent calculation of each point based on the
characteristics of all adjacent points. The Perlin noise value of each terrain grid point is transferred
to a GPU thread for calculation, so that the terrain generation process is executed in completely
parallel in the GPU. Experimental results show that The GPU algorithm generates a grid of size
25000000 (25 million grid points) needs only 0.6355 s, while the original CPU algorithm takes
23.3723 s, so, the parallel processing algorithm can improve the efficiency of the terrain generation
and meet the requirements for large-scale terrain generation compared with the original algorithm.

Introduction
Three-dimensional terrain is one of the most fundamental and important technology in the

development visualization system[1], and widely applied in the area of Geographic Information
System(GIS), Virtual Reality(VR), Synthetic Natural Environment(SNE), flight simulators, and
even in the Vehicle Terrain Measurement System(VTMS)[2-4]. At present, a simulation method
based on the digital elevation model (DEM) and terrain generation algorithms based on fractal
theory is commonly used to generate terrain [5,6], such as the random midpoint displacement
method[7,8], Perlin noise superposition method[9,10], and so on. The Perlin noise function was
proposed by Ken Perlin in 1985[11] and was improved in 2002[12]. The Perlin noise has been used
in many fields, such as generation of emotional expressions in a robot[13-15], traffic generator[16],
simulation of oxide textures[17], simulation of breast tissue[18], music generation system[19], and
generation of procedural terrain[9,10,20]. The Perlin noise superposition, is widely used as that it
can flexibly generate different terrains to meet various needs. However, there are some huge
domains, such as catchments, mountains or gorges, where an accurate digital terrain model is
required to mimic the complex topography of the terrain[21]. It means a large amount of data,
complicated computing processes, and a longer execution time.

To address this problem, a parallel algorithm for terrain generation using the Perlin noise
superposition method based on Compute Unified Device Architecture(CUDA) architecture was
proposed in this paper. Initialization of the gradient search sequence is generated with the CPU and
the Perlin noise value of each terrain mesh point is calculated within a thread that is executed in the
GPU. Therefore, the terrain height value calculation is completely accomplished in the GPU which
significantly improves the speed of terrain data generation. The Perlin noise terrain generation
method is explained in further detail in the next section. The third section describes the terrain
generation process of the parallel algorithm. In the fourth section, the results of experiments are
analyzed to compare the efficiency of the two different algorithms to generate terrains of different
scales. The fifth section generalizes and summarizes the work presented in this paper and finally
draws a conclusion.

International Conference on Materials Engineering and Information Technology Applications (MEITA 2015)

© 2015. The authors - Published by Atlantis Press 967

Perlin noise terrain generation method
The algorithm is based on the fact that the height of each terrain grid point can be generated

using superposition of different frequencies and amplitudes of the Perlin noise value. A modified
process of the Perlin noise terrain generation algorithm is demonstrated as follows.

A. Generate a sequence of positive integers: S (1~n) [in this article, n=256.
()niiSi ,...,2,1==],

B. Find the sequence G according to the S gradient generation, nLG 2= ,
First, de-serialize the sequence using the random exchange method, i.e. choosing any random

index location in the sequence between the initial position and the end position and then exchange
the values: ji SS ↔ {]_)(1[MAXRADNrandnj ×+= ni ,...,2,1= }.

Then, G can be generated from the de-serialized sequence S, as shown in Equation (1)
inii SGG == + (1)

C. Set point ()'''' ,, zyxP , +∈Rzyx ''' ,, , 0>freq , 0>amp . Calculating the Perlin noise value of
this point.

① Get ()zyxP ,, from point P using Equation (2):

•−•=
•−•=
•−•=

]'['
]'['
]'['

freqzfreqzz
freqyfreqyy
freqxfreqxx

 (2)

② Get the gradient value of 8 different points ()iiii zyxP ,, near point P using the sequence G.
{ }8,...,3,2,1∈i , 1−=α , { }α+∈ xxxi , , { }α+∈ yyyi , , { }α+∈ zzzi ,

Order

()
()
()

==
−∧=
−∧=
−∧=

niGif
nzZ
nyY
nxX

i 2...,3,2,1,)(
1]'[
1]'[
1]'[

 (3)

Then, the search value m of point iP can be determined using the following formula:
()()()ZYXfffm ++= (4)

Order 15∧= mh . Then, the gradient value of this point can be calculated using Equation (5).
{ } ()

()(){ } { } ()

{ } () { } ()

()(){ } { } () i

h

i
hh

ih

h

i

z
h
hhh

y
h
h

h
h

x

h
hhh

h
h

g

•

−•
+−

+−−
•−−+

•

−•
+−

+−−
+−•

+−
+−−

+

•

−•
+−

+−−
•−−

+−•
+−

+−−

=

+

+

])
2

[4(

]
2

[

])
2

[4(

1
14

11,4max1,1412min

1
18

11,8max1
13

11,3max

1
112

11,12max1,1513min

1
17

11,7max

 (5)

8,...,3,2,1=i , 1=α , { }α+∈ xxxi , , { }α+∈ yyyi , , { }α+∈ zzzi , .
The corresponding relationship between an adjacent point iP and the gradient value ig is as

shown in Table 1.

968

Tab.1 Adjacent points and their corresponding gradients
i Pi gi
1 (x, y, z) g1
2 (x-1, y, z) g2
3 (x, y-1, z) g3
4 (x-1, y-1, z) g4
5 (x, y, z-1) g5
6 (x-1, y, z-1) g6
7 (x, y-1, z-1) g7
8 (x-1, y-1, z-1) g8

③ First, get smooth values of x, y and z using a smoothing function, as shown in formula(6),

+−=

+−=

+−=

345

345

345

10156
10156
10156

zzzw
yyyv
xxxu

 (6)

 Then, get the Perlin noise Lz using the following interpolation method, which uses an interpolation
function to get the eight gradient values and the smooth values u, v and w.

()
()
()
()
()
()
()

−•+=
−•+=
−•+=

−•+=
−•+=
−•+=
−•+=

121

3432

1211

7874

5653

3432

1211

LyLywLyLz
LxLxvLxLy
LxLxvLxLy

ggugLx
ggugLx
ggugLx
ggugLx

 (7)

D. Set +∈NOctave , then get the Perlin noise value as the sum of points P. The evaluation process
is as follows:

Order freq = 4, amp =1, octaves= 8; sum = 0;
While octaves > 0

sum = sum + Lz
freq = freq * 2
amp = amp * 1/2
octaves = octaves - 1

End
Figure 1 shows that the generated terrain through rendering data resulting from step (4) (100 *

100 mesh).

Fig.1 The graph of terrain generated by Perlin noise superposition (100*100)

969

Terrain generation parallel algorithm

Fig.2 Graph of the GPU thread and its corresponding terrain of grid points

In the original algorithm, the height value of each point is obtained by calculating the Perlin
noise value of that point, and calculation of each point is not related to calculation of other adjacent
points. The parallel algorithm method described in this paper assigns each thread in the CUDA
thread block to a terrain of grid points, as shown in Figure 2, and then calculates the Perlin noise
value of this point in each thread. The final result will be written back to the CPU to be saved.

Allocating
memory(a

gradient array, a
array of terrain

mesh, etc)

i<total number
of terrain mesh

Calculating each
perlin noise

superimposed value
of the terrain mesh

Stop

Start

i = i + 1

Yes

No

Rendering terrain
mesh

Generating the
disorder

gradient array

Terrain mesh
number i=0

Monitor

Allocating memory

CPU memory assignment T
hread0Starting GPU threads to

compute

Reading the results from
GPU side

Storing the calculation
results

Releasing GPU memory
and CPU memory

Host（CPU） Device(GPU)

T
hread1

T
hread2

T
hreadn

R0 R1 R2 Rn

Rendering

Transferring value

GPU global memory

Fig.3The graph of CPU and GPU function module

The parallel algorithm requires that the CPU and GPU must work jointly, and they are

responsible for different functional areas. As shown in Fig.3, controlling operations are done by
CPU, and a large number of calculations are completed through the multi-threaded parallel
computing work with GPU. The specific process description of the parallel algorithm is as follows:

parallelization

970

CPU end application memory and its initialization data
Step1 Allocate CPU memory: terrain mesh point height value array data[row * column]

(row * column for terrain mesh point total)
Allocate GPU end memory: gradient array dev_G [2n] (n = 256), with the GPU end
terrain data corresponding to the grid array dev_data [row * column]

Step2 Generate a sequence of positive integers: S (1~n). (256=n)
Step3 Determine sequence G based on the S gradient generation, using the method in 2 (2)

nLG 2= and write the result in dev_G[2n]
Step4 Invoke the GPU end kernel function.

Start threads with a total number of blockNum * threadNum = row *, each
corresponding to a grid point, and then calculate the Perlin noise value of each point.

Step5 dev_data→data
Write the results back to the CPU and release the memory for the data e.g. dev_data,
dev_G, etc.

Calculate Perlin noise value of the corresponding terrain mesh point through GPU execution
Step1 Get the present thread tid = threadIdx.x +blockIdx.x*blockDim
Step2 If tid > blockNum*threadNum, then back or execute step3
Step3 Execute 2(4), save the calculation results in dev_data[tid] i.e. dev_data[tid]=sum.

Experimental results and analysis
Thirty experiments to generate different sizes of grid terrains were carried out on both the GPU

Parallel algorithm and the CPU original algorithm. The experimental hardware environment was as
follows: the processor used was Intel (R) Core (TM) i5-3470, with 3.2GHz CPU and 3.47 GB of
memory, the graphics card was NVIDIA GeForce GT620 and the software environment: QT/C + +
and CUDA/C.

The average time taken to generate different grid sizes using the two algorithms is presented in
Table 2. This data was used to generate the elapsed time contrast diagram which is shown in Figure
4. This graph shows that when the local grid scale is small, the GPU algorithm is more
time-consuming than the CPU algorithm. This is mainly because most of the time is spent doing the
data transfer between the CPU and GPU although less time is taken for the calculation. The original
algorithm can be done rapidly by the CPU and the no benefit from parallel computing is observed.
However, as the grid scale increases, the time taken to complete the original algorithm grows
approximately exponentially, while the time taken to complete the parallel algorithm grows
approximately linearly. The GPU algorithm generates a grid of size 25000000 (25 million grid
points) in 0.6355 s, while the original CPU algorithm takes 23.3723 s. Therefore, the GPU parallel
algorithm is more efficient than the original CPU algorithm for generation of large scale terrain
meshes.
Tab.2 Time comparison for generation of different mesh sizes using the CPU and GPU algorithms

Terrain grid
number(n)

log10(n) Time
Taken-CPU(s)

Time
Taken-GPU(s)

40000 4.6021 0.0369 0.0517
160000 5.2041 0.1482 0.0559
360000 5.5563 0.3340 0.0606
640000 5.8062 0.5929 0.0689
1000000 6.0000 0.9287 0.0770
4000000 6.6021 3.7359 0.1529
9000000 6.9542 8.3634 0.2691
16000000 7.2041 14.8535 0.4227
25000000 7.3979 23.3723 0.6355

971

Ti
m

e(
s)

The number of meshes(log10(n))

Original algorithm
GPU algorithm

Fig.4 Graph showing time comparison of the two algorithms

Conclusion
This article firstly introduced an algorithm to generate terrain using Perlin noise. A terrain

generation parallel algorithm based on CUDA architecture was then proposed which combined the
characteristics of the original algorithm with parallel processing. The height value of each point in
the terrain grid is transferred to the corresponding GPU parallel thread where it is executed.
Comparison of the times taken to generate different sizes of terrain grid using both algorithms
shows that the proposed algorithm achieves much faster speed at larger terrain sizes, which satisfies
requirements for generating massive terrains.

Acknowledgement
This research was supported by National Natural Science Foundation of China (NSFC) program

No. 41227802; Sichuan Province Science Supporting Program Foundation (No. 2014GZ0184); and
by Research Funding of Southwest University of Science and Technology (No. 13zx7135, 14tdhk03
and 15yyhk14).

References

[1] Bi W, Zang W, Liu T. Three-Dimensional Terrain Modeling and Path Optimization on it Based
on Google Earth and ACIS[M]. Human Centered Computing. Springer International Publishing,
2015: 872-879. doi: 10.1007/978-3-319-15554-8_81.

[2] Wang H, Zhang L, Mai J, et al. Spatial Multi-resolution Terrain Rendering Based on the
Improved Strategy for Terrain Dispatching and Pre-reading[M]. Geo-Informatics in Resource
Management and Sustainable Ecosystem. Springer Berlin Heidelberg, 2015: 225-234. doi:
10.1007/s00371-014-0941-6.

[3] Wang H, Mai J, Song Y, et al. A 3D visualization framework for real-time distribution and
situation forecast of atmospheric chemical pollution[M]. AsiaSim 2013. Springer Berlin Heidelberg,
2013: 415-420. doi: 10.1007/978-3-642-45037-2_44.

[4] Chung H, North C, Ferris J. Developing Large High-Resolution Display Visualizations of
High-Fidelity Terrain Data[J]. Journal of Computing and Information Science in Engineering, 2013,
13(3): 034502. doi: 10.1115/1.4024656.

[5] Lee C, Oh J, Hong C, et al. Automated Generation of a Digital Elevation Model Over Steep
Terrain in Antarctica From High-Resolution Satellite Imagery[J]. Geoscience and Remote Sensing,

972

IEEE Transactions on, 2015, 53(3): 1186-1194. doi: 10.1109/TGRS.2014.2335773.

[6] Noh M J, Howat I M. Automated stereo-photogrammetric DEM generation at high latitudes:
Surface Extraction with TIN-based Search-space Minimization (SETSM) validation and
demonstration over glaciated regions[J]. GIScience & Remote Sensing, 2015, 52(2): 198-217. doi:
10.1080/15481603.2015.1008621.

[7] Zhang X, Yuan Y, Qi M. Impact of terrain complexity on the accuracy of calculations of river
channel storage volume derived from measurements of underwater topography[J]. Arabian Journal
of Geosciences, 2015: 1-20. doi: 10.1080/15481603.2015.1008621.

[8] Génevaux J D, Galin E, Peytavie A, et al. Terrain Modelling from Feature Primitives[C].
Computer Graphics Forum. 2015. doi: 10.1111/cgf.12530.

[9] Michelon de Carli D, Pozzer C T, Bevilacqua F, et al. Procedural generation of 3D canyons[C].
Graphics, Patterns and Images (SIBGRAPI), 2014 27th SIBGRAPI Conference on. IEEE, 2014:
103-110. doi: 10.1109/SIBGRAPI.2014.41.

[10] Choroś K, Topolski J. A Method of the Dynamic Generation of an Infinite Terrain in a Virtual
3D Space[M]. Intelligent Information and Database Systems. Springer International Publishing,
2015: 377-387. doi: 10.1007/978-3-319-15705-4_37.

[11] Perlin.K. An Image Synthesizer[J]. Computer Graphics. 1985, 19(3). doi:
10.1145/325165.325247.

[12] Perlin.K. Improving Noise[J]. Computer Graphics, 2002, 35(3).doi: 10.1145/566654.566636.

[13] Andrist S, Tan X Z, Gleicher M, et al. Conversational gaze aversion for humanlike robots[C].
Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction. ACM,
2014: 25-32. doi: 10.1145/2559636.2559666.

[14] Bohg J, Romero J, Herzog A, et al. Robot arm pose estimation through pixel-wise part
classification[C]//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE,
2014: 3143-3150. doi: 10.1109/ICRA.2014.6907311.

[15] Saupp é A, Mutlu B. Design patterns for exploring and prototyping human-robot
interactions[C]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
ACM, 2014: 1439-1448. doi: 10.1145/2556288.2557057.

[16] Prieto I, Izal M, Morato D, et al. Traffic generator using Perlin Noise[C]. Global
Communications Conference (GLOBECOM), 2012 IEEE. IEEE, 2012: 1847-1852. doi:
10.1109/GLOCOM.2012.6503384.

[17] Acosta M R G, Díaz J C V, Castro N S. An innovative image-processing model for rust
detection using Perlin Noise to simulate oxide textures[J]. Corrosion Science, 2014, 88: 141-151.
doi: 10.1016/j.corsci.2014.07.027.

[18] Dustler M, Bakic P, Petersson H, et al. Application of the fractal Perlin noise algorithm for the
generation of simulated breast tissue[C]. SPIE Medical Imaging. International Society for Optics
and Photonics, 2015: 94123E-94123E-9. doi: 10.1117/12.2081856.

[19] Nicholson C J, De Schreye D, Sneyers J. Improving compositions of the Apopcaleaps music
generation system by using Perlin Noise[C]. Technical Communications of the 27th International
Conference on Logic Programming, ICLP 2011,. 2011: 231-239. doi: 10.4230/LIPIcs. ICLP. 2011.
231.

[20] Marinescu A. Optimizations in perlin noise-generated procedural[J]. Studia Universitatis
Babes-Bolyai, Informatica, 2012, 57(2). doi:10.1016/j.cageo.2015.02.010.

973

[21] Lacasta A, Juez C, Murillo J, et al. An efficient solution for hazardous geophysical flows
simulation using GPUs[J]. Computers & Geosciences, 2015, 78: 63-72. doi:
10.1016/j.cageo.2015.02.010.

974

