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Abstract—The shaft misalignment usually causes the severe 
vibration of rotating machine. In this paper, a three-dimensional 
dynamic model of a coupled gear–rotor system is developed to 
simulate this phenomenon. The numerical simulation of the 
dynamic characteristics is performed to analyze the effects of 
both internal gear meshing and external shaft misalignment 
related dynamic excitations on the gearbox transmission response. 
This study provides useful theoretical guideline to the helical gear 
system design. 
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I. INTRODUCTION 
The gear train system are one of the most essential 

components in industrial machinery due to its high efficiency, 
tight structure, stable speed ratio and so on[1]. Severe vibration 
control of gear train system are important to machine’s safe 
operation. Shaft misalignment is a condition in which the shaft 
of the driving machine and the shaft of the driven machine are 
not on the same center line , which will cause the abnormal 
vibration of the connected equipment, such as gearbox. There 
are two typical types of misalignment, angular misalignment 
and parallel misalignment[2]. When the connected two shafts 
have different angular orientations, the angular misalignment 
occurs. For the parallel misalignment, the connected shafts 
have the same angular orientations, but center lines are 
separated from each other. The existence of shaft misalignment  
will influence the dynamic characteristic of the gear mesh 
response and need to further analysis. 

During the recent decades,  several research works for shaft 
misalignment has been represented. Many researchers have 
proposed theoretical models to represent this phenomenon  
through vibratory analysis. Xu and Marangoni [3, 4]pursued a 
vibration analysis based on a theoretical model and its 
validation. They figured out that shaft misalignment tends to 
show up as a series harmonics of the shaft rotating speed. Al-
Hussain and Redmond[5] studied the dynamic response of two 
rotors connected by rigid and flexible mechanical coupling 
with parallel misalignment and angular misalignment. Lees has 

studied the vibration response of misalignment fault in the rigid 
connected rotor system. Some experiments were also achieved 
to research the phenomenon of misalignment. Dewell and 
Mitchell[6] analyzed the vibration frequencies for a misaligned 
metallic disk flexible coupling. However, there are rarely 
researches on the influence of the misalignment to helical gear 
train system. Do some researches on the impact of the 
misalignment to gear train system can improve the precision of 
the gear transmission. 

In this paper, the influence of the combination both of angle 
and parallel misalignments to the dynamic characteristics of 
helical gear system has been studied. The dynamics simulation 
model was used to study the characteristics and influencing 
factors of gearbox vibration which generated by the compound 
misalignments. 

II. GEARSYSTEM MODEL WITH SHAFT MISALIGNMENT 
FIGURE. 1 represents the dynamic diagram of a helical 

gear train system with shaft misalignments. This misalignment 
combines both angular misalignment and parallel misalignment. 
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FIGURE I. GEAR TRAIN MODEL WITH MISALIGNMENT 
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FIGURE II. THE DIAGRAM OF MISALIGNMENT FORCE 
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FIGURE III. THE DIAGRAM OF FORCE ANALYSIS 

A. The Calculation of Misalignment Force  
The mechanism model taken in this paper contains a helical  

gear pair and rotor shaft with compound misalignment. 
FIGURE. 2 illustrates the change regulation of additional 
forces caused by shaft misalignment. According to FIGURE.2, 
the axial force has the same frequency with the shaft running 
speed, and the frequency of radial force is as twice as the shaft 
rotating frequency. Mathematically, these additional force can 
be expressed as follows: 
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where the Fcy and Fcy indicates the radial force and axial force 
respectively. The fr is the rotating frequency of the driven shaft. 
The coefficients Fr and Fa are related to the deflection angle, 
the parallel displacement, the stiffness of coupling and the shaft 
torque. To simplify the calculation process, the force acting on 
the coupling is equivalent to the force on the driven gear. 
FIGURE. 3 is the schematic diagram of equivalent result. 

B. The Mathematical Model 
The proposed dynamic model of the helical gear pair is 

shown in FIGURE.1, which shows the driving gear (subscript g) 
meshing with the driven gear (subscript p). In this study, we 
take into account the dynamic characteristics and vibration 
responses of this gear pair in three dimensions. The following 
assumptions are made in the mathematical model[7]. 

1. The deflection of the gear shaft is neglected, because the 
length of the shaft is little.  

2. Shaft mass and inertia are neglected, and the helical gear 
backlash is also neglected. 

3. Gear pair meshing flexibility and other parts flexibility 
are included in a linear spring. 

4. The gear meshing stiffness is time-varying, and the 
support stiffness is constant. 

5. Tooth friction and swing vibration motion are not 
concerned in this dynamic model. 

According to the Newton’s law and Alembert’s principle[8], 
the dynamic model coupled flexional, torsional and axial 
motion of a helical gear pair shown in FIGURE.2 can be 
expressed as 
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Where, Ri (i=g, p)represent the base radii of driving gear 
and driven gear, respectively. mi (i=g, p) indicates the 
equivalent mass of driving gear and driven gear, respectively. Ii 
(i=g, p) is the moment of inertia of driving gear and driven gear, 
respectively. Ti (i=g, p) represent the driving torque and 
loading torque, respectively. kij (i=g, p and j=y, z) is the 
supporting stiffness of bearings of driving gear and driven gear 
in the y and z direction , respectively. cij (i=g, p and j=y, z) 
indicates the supporting gear damping  of driving gear and 
driven gear in the y and z direction , respectively. To simplify 
the calculation process, the mesh stiffness of this gear pair in 
the y and z direction are defined as follows 
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C. The Calculation of Mesh Stiffness 
The gear mesh stiffness fluctuation as a form of parametric 

excitation, is caused by the time-varying of the composite mesh 
stiffness due to the internal multi-tooth gear engagement 
process[9]. When the gear pair engages to transmit motion and 
force, the number of contacted teeth varies in a periodic 
discrete form. Additionally, the effective mesh stiffness for 
each contacted pair of teeth varies periodically as the pair rolls 
through one tooth to another mesh cycle. This is partly due to 
the change in the position of the contact lines on the tooth 
profile surface. According to [9], the time-varying behavior of 
a single contact line of a helical gear tooth pair can be 
expressed as li (t). Then by superposition  of all the tooth pairs 
in contact at any given time, the total mesh stiffness can be 
expressed as Km (t).  
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where p is the number of gear teeth pairs in contact and i is the 
serial number of contact lines. Tz indicates the gear meshing 
period. ε is the total contact ratio of this gear pair. The time-
varying meshing stiffness is shown in FIGURE. 4. 

The equation of motion is given in the matrix form as 

 [ ]{ } [ ]{ } ( ){ } { ( )}mM X C X K t X P t+ + =&& &  (5) 

where M is the mass matrix, C is the damping matrix,  Km (t) 
indicates the stiffness matrix, X is the vector of the 
displacement , and P(t) is the vector of the load. In this study, 
we used the Newmark time integration method to solve the (5). 
The Newmark method is a generalization of the linear 
acceleration  method[10]. This latter method assumes that the 
acceleration varies linearly within the interval (t+ Δ t). this give 
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The response at time t+ Δ t is required by evaluating the 
equation of motion at time t+ Δ t. Therefore, the Newmark 
method is an implicit method. The main parameters of this gear 
train system is represented in Table 1. 
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FIGURE IV. INPUT TIME-VARYING MESHING SFIFFNESS 

TABLE I.  MAIN PARAMETERS OF THE GEARBOX SYSTEM 

Parameters of dynamic model Value 

Mass of the driving gear 1.12 Kg 

Mass of the driven gear 7.26 Kg 

Mass moment of inertia of the driving gear 8.56×10-4  Kg.m2 

Mass moment of inertia of the driven gear 5.39×10-2  Kg.m2 

Input shaft frequency 30 Hz 

Mesh frequency 570 Hz 

Radial stiffness of the bearing 6.6×107   N/m 

Damping coefficient of the bearing 1.8×105  N/m 

Transverse pressure angle 20 ° 

III. DYNAMIC MODEL SIMULATION RESULT 
According to (2) and the main parameters of the gear train 

system, we simulated the gear pair vibration response with the 
compound misalignment condition. FIGURE. 5 (A) and (B) 
represents the displacement in the y direction with and without 
misalignment, respectively. A quasi-sinusoidal component 
oscillation around the imposed deviation (radial force). The 
period of two peaks indicates the half of the running period of 
the shaft. FIGURE. 5 (C) and (D) represents the displacement 
in the z direction with and without misalignment, respectively. 
The period of two peaks indicates the one running period of the 
shaft. The displacement waveforms express a possible 
amplitude modulation phenomenon, and the amplitude of 
displacement fluctuation are both increased. FIGURE. 6 (A) 
and (B) displays the spectrum of the acceleration signals  in the 
y and z direction with misalignment, respectively. We can find 
out the double shaft running frequency in y direction and one 
shaft running frequency in z direction. Dynamic transmission 
error (STE) is used to measure the difference between actual 
positional of gear with ideal positioning and it is measured by 
vibration displacement in meshing line. The STE can be 
defined as follows 

 * *error R y R yg g p p= −  (7) 
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FIGURE V. THE DISPLACEMENT: (A) Y DIRECTION WITHOUT 
MISALIGNMENT (B) Y DIRECTION WITH MISALIGNMENT (C) Z 
DIRECTION WITHOUT MISALIGNMENT (D) Z DIRECTION WITH 

MISALIGNMENT 
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FIGURE VII. THE DYNAMIC TRANSIMISSION ERROR: (A) Y 
DIRECTION WITHOUT MISALIGNMENT (B) Y DIRECTION WITH 

MISALIGNMENT 
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FIGURE VII. THE DYNAMIC TRANSIMISSION ERROR: (A) Y 
DIRECTION WITHOUT MISALIGNMENT (B) Y DIRECTION WITH 

MISALIGNMENT 

FIGURE. 7 represents the dynamic transmission error 
without and with misalignment in the y direction, respectively. 
Through the comparison, the STE with misalignment is 
accompanied by the doubled shaft frequency modulation 
phenomenon with a stronger amplitude volatility. 

IV. CONCLUSION 
In this study, we proposed a six-freedom  dynamic model to 

simulate the helical gear train system with misalignment.  The 
simulated vibration signals show that the y direction is 
essentially characterized by the appearance  in the frequency 
domain of the doubled shaft running frequency, and the z 
direction is characterized the shaft running frequency. These 
two features expressed the actual working condition with 
misalignment and can be useful in the detection of shaft 
misalignment in the rotor-gearbox machine diagnosis. 
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