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Abstract—With the rapid development of high performance 
computing technology, the simulation of viscoelastic fluids has 
become an extremely important research area and numerous new 
promising techniques have been proposed over the last decades.  
In this paper we proposed a numerical algorithm for solving the 
multi-scale two-fluid model, additionally, based on an open 
source CFD toolbox, we implemented a parallel solver and 
verified the algorithms through parallel simulations. The results 
verified the numerical algorithm and show that the parallel codes 
of the solver have good parallel efficiency. 
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I. INTRODUCTION 
Viscoelastiticy refers to the property of materials that 

exhibit both viscous and elastic characteristics when 
undergoing deformation. Many natural and synthetic fluids 
exhibit viscoelastic characteristics; notable examples include 
blood, DNA solutions, polymer melts and solutions, and fiber 
suspensions [1-4]. The most challenging part of modeling the 
viscoelastic fluids is to determine the non-linear coupling 
between the macroscopic rheological responses and the 
microscopic evolution of molecular configurations under flow, 
thus modeling the viscoelastic fluids intrinsically is a multi-
scale problem. 

As a microscopic approach, the atomistic modeling is 
limited to the flow geometries of molecular dimensions due to 
the massive computing resource requirements. Recent years, 
the coarse-grained molecular kinetic theory gained major 
devolvement, and numerous constitutive equations derived 
from the closure approximations of a kinetic theory were 
proposed [5]. Nevertheless, the approximations such as the pre-
averaging or the decoupling involved for a macroscopic 
constitutive equation significantly impact on the rheological 
predictions of viscoelastic fluids. The micro-macro methods 
that couple the macroscopic continuum mechanics with the 
microscopic coarse-grained molecular kinetic theory plays a 
much more important role in the simulation of viscoelastic 
fluids. The Brownian Configuration Field (BCF) method [6] is 
a new promising micro-macro simulation approach for the 
complex fluids simulations. 

In this paper, we aim to numerically solve a multi-scale 
two-fluid model based on the BCF approach. The detailed 
algorithms are described along with the parallel 
implementation based on an open source CFD toolbox, named 
OpenFOAM [7]. The main contributions of the paper are as 
follows: 

 Proposed a numerical algorithm for solving the multi-
scale two-fluid model; 

 Implemented a parallel solver for modeling of two-
phase viscoelastic fluids based on the OpenFOAM; 

 Verified the numerical solver and the algorithms 
through parallel simulations. 

The remainder of this article is organized as follows: Firstly 
we give the basic ideas and describe the architecture of the 
numerical solver in Section II. In Section III the governing 
equations for modeling the two-phase viscoelastic fluids are 
presented and followed by the iterative algorithm to solve the 
model. The simulation results are showed in Section IV. Some 
related work in viscoelastic fluids simulation is reviewed in 
Section V. We present our conclusions in Section VI. 

II. THE ARCHITECTURE OF THE NUMERICAL SOLVER 
BASED ON OPENFOAM 

To discretize the governing equations and solve the 
discretized linear systems, we use an Open Source CFD 
toolbox released by the OpenCFD Ltd, named OpenFOAM. 
OpenFOAM is a C++ library used to solve the CFD problems. 
Many typical linear system solvers and discretization schemes 
are predefined in this library. Appropriate type of solvers and 
the schemes could be configured through the control dictionary 
file. The OpenFOAM uses programming languages that is very 
close to the verbal and mathematical languages used in science 
and engineering, thus writing a numerical solver based on 
OpenFOAM becomes significantly easier. The schematic 
diagram of the architecture for written a numerical solver is 
shown in Figure I. It forms a four-layer structure to keep the 
key functions of the numerical solver independent. The 
iterative numerical algorithms are written in OpenFOAM 
programming languages in the Multi-scale Numerical solver 
layer.  
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FIGURE I THE SCHEMATIC DIAGRAM OF THE PARALLEL 

NUMERICAL SOLVER BASED ON OPENFOAM 

The User API layer provides all the necessary classes and 
interfaces to write the equations in C++. At this point, the users 
do not need to know anything about the linear system solvers 
and the parallel computing techniques in detail. The application 
to describe the Algorithm 1 can be written in OpenFOAM 
programming languages. The Linear solver layer contains 
numerous most commonly used linear equation algorithms 
including the conjugate (PCG) and bi-conjugate gradient 
(PBiCG) methods. The discretization schemes used in the 
numerical solver are also implemented in this layer and the 
configurations used in our solver are listed in Table I. 

TABLE I THE DISCRETISATION SCHEMES USED IN THE 
NUMERICAL SOLVER FOR DIFFERENT TERMS 

 
In this architecture, the only module related to the parallel 

communication is the Parallel Library layer. Here the MPICH 
library is used and the interfaces provided in this layer can 
enable the leaner solvers communicating with each other while 
running in parallel. 

III. THE NUMERICAL ALGORITHM FOR MODELING TWO-
PHASE VISCOELASTIC FLUIDS 

A. The Governing Equations of A Multi-scale Two-fluid 
Model 
To model the phase transitions of a two-phase viscoelastic 

fluid, macroscopic constitutive equations are replaced to the 
BCF approach for calculating the viscoelastic stress tensor. The 
governing equations for the full model are brought together 
below. 

For isothermal and incompressible viscoelastic fluids with 
density, the continuity equation and the momentum balance 
equation can be expressed as 

                                          (1) 

and 

    (2) 

The evolution equation of the composition field A could be 
written as 

         (3) 

The thermodynamic effects in two-fluid framework are 
described through the chemical potential difference 

, which could be defined as the functional 
derivative of the mixing free energy with respect to local 
volume fraction, i.e., 

                                  (4) 

We take a first order approximation of the Flory-Huggins-
de-Gennes form for the mixing free energy function Fmix. 

The viscoelastic stress tensor  is considered on a 
microscopic viewpoint. To simulating the distribution of the 
molecular chain,  configuration fields  are 
introduced to replace the Fokker-Planck equation, therefore the 
corresponding stochastic differential equation can be rewritten 
as [6] 

 (5) 

According to the Kramer’s expression, the viscoelastic 
stress  can be given by [8] 

             (6) 

and 

D
~Q Ð F (~Q )

E
¼

N fP

i= 1

~Q i(~r;t)Ð F (~Q i(~r;t))
            (7) 

In this representation d ~W i(t) only depends on time and 
essentially are independent Gaussian variables with zero mean 
and variance dt. 

B. An Iterative Numerical Algorithm Based on OpenFOAM 
To numerically solve the multi-scale model described in 

Section III, a modified PISO iterative algorithm is adopted. In 
our previous research, A similar algorithm for solving the 
macroscopic model has been well tested in a numerical study 
for the dynamics of polymer solutions in contraction flow [9]. 
Additionally, the shear-banding flows with a macroscopic two-
fluid model have been studied recently [10]. The revised 
version of the multi-scale numerical algorithm has been 
presented in Algorithm 1. In this algorithm, steps 4 ~7 solved 
the microscopic equations to obtain the viscoelastic stress. The 
modified PISO iterations presented in steps 8~11, then 
followed by the volume fraction calculations at steps 12 ~14. It 
should be noted that the correction steps 13 ~14 are added to 
restrict the volume fraction variables in the range of [0, 1]. 
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Algorithm 1 The iterative algorithm to solve the multi-scale 

two-fluid model 

IV. SIMULATION RESULTS 
The codes of the parallel solver have been investigated in 

test simulations on a HPC cluster located in the State Key 
Laboratory of High Performance Computing. Each computing 
node of this cluster contains 12 Intel Xeon E5-2620 2.10GHz 
CPU cores and a total main memory of 16GB. The parallel 
simulations are executed by distributed the processes to the 
computing nodes with 1 process every CPU core.  

The main parameters of the multi-scale model remain 
constant throughout all of the simulations and are set as shown 
in Table II. Furthermore, we specify a poiseuille flow in a 
planar channel as shown in Figure II. In a planar channel, the 
viscoelastic fluid flows driven by the constant pressure gradient 
between the inlet and the outlet of the channel.  

TABLE II PARAMETERS USED IN SIMULATIONS 

 

 
FIGURE II THE POISEUILLE FLOW IN A PLANAR CHANNEL WITH 

THE LENGTH RATIO 
lx
ly

= 10
. THE FLOW FIELD IS DRIVEN BY 

OCCURRING CONSTANT PRESSURE GRADIENT IN THE CHANNEL 
DIRECTION. 

The steady-state velocity U x  and the corresponding 
viscoelastic stress component ¾xx   are sampled after a long 
time simulation withTsim > 100¸ . At a fixed x-axis x = 5.0, 
the profiles are plotted in Figure III. The parabolic profiles of 
the simulation results are consistent with previous research.  

 
(a)                                                 (b) 

FIGURE III (A) THE STRONG SCALABILITY WITH FIXED TOTAL 
MESH SIZE 1048576; (B) THE WEAK SCALABILITY FOR FIXED MESH 

SIZE 8192 PER PROCESSOR CORE 

 
FIGURE IV THE STEADY-STATE VELOCITY FIELD U x  AND THE 

VISCOELASTIC STRESS COMPONENT ¾xx  AT A FIXED X-AXIS X = 
5.0 

To evaluate the scalability of the parallel codes based on the 
OpenFOAM, firstly we fixed the problem size with a mesh of 
1048576 cells, and the execution times varies with the number 
of processor cores are plotted in Figure IV(a). From 16 to 128 
processor cores, the time cost is significantly reduced as the 
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parallel scale increasing. Nevertheless, the execution time 
cannot be decreased as the core number larger than 128. As 
shown in the plot, the execution time with 128 cores and 256 
cores are almost the same. It is found that the optimal number 
of mesh cells for each processor core may be around 8192. 
Therefore a fixed mesh size of 8192 cells are distributed to 
each core in the weak scalability tests as presented in Figure 
IV(b). As the parallel scale (processor cores) raising, the total 
problem size measured by the mesh data size increases linearly, 
however the execution time of the simulations changes little. 
That means the parallel codes implemented in this paper can be 
easily scale to more than 256 processor cores. 

V. RELATED WORK 
With the developing of the high performance computing 

technology, the simulation of viscoelastic fluids has become an 
extremely important research area and numerous new 
promising techniques have been proposed over the last decades. 
The atomistic modeling is the most detailed approach to 
describe the rheological behavior in complex fluids, however, 
considering the massive computer resource requirement, this 
microscopic approach is limited to flow geometries of 
molecular dimensions. Thus some micro-macro methods [5] 
were introduced that coupled the coarse-grained molecular 
kinetic theory to the macroscopic continuum equations. The 
Brownian configuration field (BCF) method proposed by 
Hulsen et al.[6] is a promising new multi-scale approach to 
model the viscoelastic fluids. The key idea of the BCF method 
is using Brownian configuration fields instead of tracking 
discrete particles, and that significantly reduces the drawbacks 
of the CONNFFESSIT method introduced by Laso and 
Ottinger[11].  

In practice the BCF method works very well and has been 
applied to simulation of numerous viscoelastic flows, including 
the flow past a cylinder[6,12], viscoelastic free surface 
flows[13], contraction and expansion flows[14], Couette flow, 
Poiseuille flow, lid driven cavity flow[8] and flow between 
eccentrically rotating cylinders [15]. Due to the spatial 
smoothness, the BCF method has a considerable increased 
numerical stability. This advantage was confirmed in previous 
research and Mangoubi [16] recently gave an in-depth analysis 
about the origin of the numerical stability of the BCF method. 

The numerical solver proposed in this paper is inspired by 
these previous researches. We expect the research will motivate 
more progress in large-scale parallel simulation for viscoelastic 
fluids. 

VI. CONCLUSION 
The dynamics under flow of multi-phase viscoelastic fluids 

plays essential roles in numerous applications ranging from 
biological systems to the industrial production. As modeling 
the two-phase viscoelastic fluids is a multi-scale problem, we 
introduce a macro-micro model that couples the microscopic 
BCF method into the macroscopic two-fluid framework. In this 
paper, we give a parallel numerical algorithm to solve this 
multi-scale two-fluid model, and the basic ideas to implement 
the solver based on an open source CFD toolbox have been 
presented in detail. Finally, the parallel codes of the numerical 
solver have been tested in a HPC cluster. The profile of the 

simulation results and the parallel scalability are presented. The 
results verified the numerical algorithm and show that the 
solver has good parallel efficiency. 
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