
The Software Architecture of the Physolator–a

Physical Simulation Framework

Dirk Eisenbiegler

Faculty for Digital Media

University of Furtwangen

Furtwangen, Germany

Abstract—Physolator is Java based physics simulation

framework. Physolator supports an object oriented style for

building physical models. This article describes Physolators core

architecture and it explains how the framework architecture
contributes to building physical simulations in a modular, object

oriented style.

Keywords-physical simulation; Java; object-oriented framework

I. INTRODUCTION

Computer based physical simulations are an important tool
for physicists. Besides that, physical simulations are also used

in engineering sciences, in computer games, in animations and
inside e-learning tools.

Physolator is a Java based framework for building physical
simulations. Physolator is designed for beginners as well as for

professionals. It only takes basic Java programming skills and
little knowlege about physics to get started. The Physolator

provides a Java based infrastructure that makes it easy for

beginners to get their first physical simulation up and running.
At www.physolator.de there is a video tutorial explaining in

ten minutes, how to write your first physical simulation [2].

Physolator is also well suited for professionals. It provides

powerful object oriented techniques for building complex
physical simulat ions in a modular style where physical

components, numerical procedures and graphics components

are reused in different physical systems. Many of the features
can be found on the website www.physolator.de. More details

can be found in [1].

II. APPROACHES TOWARDS BUILDING PHYSICAL

SIMULATIONS

Physical systems are nothing but computer programs.
Basically, it only takes a programming language to implement

a physical simulation program and run it on the computer.

However, you have to be aware, that some very specific skills
are required. Sure, you must be familiar with physics.

Furthermore, you must have an understanding of numerical
mathematics in order to implement the numerical procedures.

Finally, you the results of the physical simulations have to be
visually represented on the screen. This is why you must also

be familiar with 3D graphics programming.

There are lots of different ways to build a physical
simulation. You can build your physical simulation from

scratch or you may use one of the libraries and frameworks
available in the internet. Developing physical simulat ions

should be done in componentwise and the components should

be shared inside a community. However, many of the existing

architectures are not designed for reuse. Furthermore, the big
variety of architectures makes it very difficult to share

components.

Numerical frameworks like MATLAB/Simulink or GNU
Octave can help you to overcome the burden of implementing

numerical procedures. They also provide you with a set of
graphical tools. However, these frameworks use very specific

programming languages. In order to use these frameworks you
first have to learn these programming languages.

III. PHYSICAL SYSTEMS

Physolator is an object oriented framework that runs

physical systems. PhysicalSystem is a class provided by the
Physolator framework. Users of the Physolator implement

subclasses of PhysicalSystem. After loading these subclasses to

the Physolator, the Physolator can run the simulat ion.

FIGURE I. EXAMPLE FOR A PHYSICAL SYSTEM

When working with Physolator, physical variables are

nothing but object attributes. Java annotations are used to
describe relat ions between the variables. The example above

represents a vertical trajectory of a point mass with an air
resistance force against the direction of movement. The system

consists of the physical variables x, v and a, representing the
height, the speed and the acceleration of the point mass. Java

annotations are used to define the derivation relationships

between the variables: v is the first derivative of x and a is the
first derivative of v. The annotations also define the physical

units of the variables.

public class TestSystem extends PhysicalSystem {

 @V(unit = "m", derivative = "v")
 public double x = 3;

 @V(unit = "m/s", derivative ="a")
 public double v = 5;

 @V(unit = "m/s^2")
 public double a;

 @Override
 public void f(double t, double h) {
 a = -9.81 - 0.1 *Math.signum(v)*Math.pow(v,2);
 }

}

International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2015)

© 2015. The authors - Published by Atlantis Press 61

Inside a physical system the method f contains the
formulas. In this simple example, there is only one formula.

The formula describes how to compute the actual value of the
acceleration a.

FIGURE II. PHYSICAL SYSTEM AFTER LOADING

The variables with their init ial values and the formulas

define the behavior of the physical system. The physical system
is nothing but an ordinary differential equation. After loading

the physical system to the Physolator, the Physolator will
“numerically solve” the differential equation. In other words:

The Physolator will run the physical system.

FIGURE III. PHYSICAL SYSTEM DURING RUNTIME

IV. PHYSICAL COMPONENTS

The Physolator framework supports a modular, object

oriented development style. The core elements are scalar
physical variables. In Java, scalar physical variables correspond

to object attributes of type double. Step by step more and more
complex components are build by combin ing scalar physical

variables to objects and by combining physical variables and

objects to more complex objects: vectors, point masses, springs,
rotation objects, grids of point masses, springs, scalar fields and

so on.

The following picture shows a more complex physical

system with a satellite revolving around moon and earth. The
physical system is build in a modular style. It consists of

vectors, rotation objects and point masses. Derivation
relationships are defined on the level of objects rather than on

the level of scalar physical variables. Each component is not
only a container for the scalar physical variables, but it also

contains its mathematical and physical formulas. Vectors

contain methods for vector arithmetic and point masses contain
formulas for gravitation, Corriolis forces and centripetal forces.

FIGURE IV. OBJECT ORIENTED MODELLING

Physical components are objects, that contain both: the

current state of the object (variables) and its behavior (formulas,
i.e. methods). The objects are linked with one another. Links

are described via Java annotations. In the above example, a
point mass contains a link to a rotation object describing the

rotation of the coordinate system. Due to this link the point
mass “knows” how to compute its Coriolis and centripetal

force.

Physical components are designed for reusability. Once you

have declared a physical component, you can build several

instances in different physical systems. You can also use
inheritance to build variations of the physical components and

add extra behavior to the components. So far, the point mass
class contains the physical formulas for gravitation, Coriolis

force and centripetal force, but it does not yes describe the
behavior of springs. To add this physical rule to point masses,

you have to build a subclass and add appropriate formulas by

overwriting method f.

Physical components are nothing but Java classes.

Physolator supports Java 8. In order to improve reusability and
performance, you can all the features that Java provides:

generics, inner classes, anonymous inner classes,
lambdas/closures, enumerations, mult ithreading [4,5].

62

V. PHYSOLATOR ARCHITECTURE

Most numerical frameworks work with scripting languages.

The user writes his code in the scripting language and the

frameworks links the user code by interpreting the scripts. The
Physolator uses a different approach. Both the framework and

the user code are written in Java. The user code is loading using
Javas class loading techniques.

Physolator makes extensive use of annotations and
reflection. Annotations and the reflection API are advanced

elements of the Java programming language [4]. The user

attaches configuration information to its code by adding
annotations. During load time, the Physolator creates an

instance of the class and analyzes the structure of the
components and subcomponents. This is where the Java

reflection API is used. Furthermore, the Physolator uses the
reflection API to read the annotations: derivation relationships,

physical units, links between objects.

Running a physical system means applying a numerical
procedure. The Physolator comes with a set of built -in

numerical procedures like Runge-Kutta, Fehlberg and
Dormand-Prince. It supports simulations with a fixed step with

as well as simulations with variable step widths. Physolator
supports both single step methods as well as multi-step

methods like Adams-Bashforth and it also supports predictor-
corrector techniques. As already mentioned, there is a set of

built-in numerical methods. However, you may also program

your own numerical procedures, load them to the Physolator
and use them during the physical simulation. Have a look at [3]

for details.

Physolator has an integrated recorder. For every simulation

time, the recorder stores the values of all variables. Th is data is
used in different ways. There is a built in plotter for printing the

function graphs of selected variables (see figure III). The

recorded data may also be accessed from graphical components
(see figure V).

The Physolator implementation is based on Eclipse RCP [6].
Eclipse RCP provides Physolator with the look and feel that

programmers are used to when dealing with integrated
development environments (IDEs) such as NetBeans, Eclipse

or IntelliJ IDEA. Physolator, however, is an independent piece

of software. Neither is it an IDE nor is it a plugin for an IDE.
The user can choose any IDE to build physical system for the

Physolator. Physolator comes with a library of classes. To build
your own physical system, all you have to do is add this library

to the class path.

Physolator provides an auto-start mechanism. To get a

physical system up and running you would usually start the
Physolator and then manually load the physical system into the

Physolator framework. Instead you can equip your physical

system with a main method, that invokes the start()-Method.
Physical systems with such a main-method can be started from

the IDE. Starting a physical system results in starting the
Physolotor framework and automatically loading the physical

system into the framework.

Once a physical system is loaded into the Physolator, you

can continue developing your code inside the IDE. A reload-

button inside the Physolator allows you to update your physical
system to the current state from the IDE.

VI. GRAPHICAL COMPONENTS

Graphical components visually represent the current state of

a physical system. Physolator supports both 2D and 3D graphic
components. Graphical components are attached to physical

systems. They are loaded whenever a physical system is loaded,

that references one ore several graphical components.

In many situations 2D graphics are a good choice for a clear

depiction of the physical system state. 2D graphics components
can be used for both: visualization on the screen and high

quality printed publications. The built-in graphical component
API provides an adapter for painting the 2D drawing objects to

the screen using OpenGL. But it has also an adapter for
producing scalable vector graphics (SVG). Graphical

components come with a built-in snapshot functionality. The

snapshot function produces SVGs. SVGs are well suited for
high quality printed publications.

FIGURE V. GRAPHICAL COMPONENT

Physolator also supports 3D graphical components based on
OpenGL. The picture of an OpenGL based 3D screen is

computed by the graphics card. This is why in this case a
snapshot in can only produce bitmaps and the resolution is

limited by the screen resolution.

All graphical components – 2D and 3D – are interactive. As

soon as your mouse is over the graphical components,

interactive buttons show up (see figure V). These buttons are
used for navigating inside the graphics: zooming in and out,

moving to any direction. Furthermore, there is also a button for
taking snapshots and another one for changing the settings. The

2D graphics have a built-in mechanism for drawing scales and
grid lines. As you navigate inside a 2D graphical component,

the scales and grid lines are adapted automatically.

Graphical components provide a parameter mechanism.
Annotations inside the graphical components define, that the

values of certain variables are parameters of the graphical
components. By pressing the settings button, the user can

interactively change their values.

63

FIGURE VI. GRAPHICAL COMPONENT PARAMETERS

You can program a graphical component that is tailored to a
specific physical system. A lternatively, you can implement a

generic graphical component that is designed for a specific
domain and that can be used by different kinds of physical

system from that domain. Figure V shows a generic graphics

component for two dimensional point masses. Any physical
system working with two dimensional point masses can use

this graphics component without any extra programming work.

Generic graphical components make use of the built -in

structure API. The structure API allows the graphical
component to read the structure of the physical system. In the

example: How many point masses are in the physical system?

What are their names? What are their positions and speeds?
The above example also makes use of the recorder. Figure V

not only shows the current location of the point masses, but
also their paths. The paths are drawn using data from prev ious

points in time.

VII. PHYSICAL EVENTS

Physical variables usually are continuous and differentiable
functions of time. In physics, this is true for many domains. In

such domains, physical systems are often described using
ordinary differential equations.

However, there are also some physical effects, where the

values of variables change abruptly. The change happens
within one point in time. This sudden change results in a

discontinuity of the physical variab les. This kind of physical
effect shall be called a physical event. Examples for physical

events are mechanical impacts and breaks, electronic switching
operations and radioactive decay events. In all this cases, the

physical model defines, that the event happens in a single point
in time. In such a case the formulas of the physical model

describe a functional relationship between the state of the

physical system right before the event and the state of the
physical system right after the event.

Physolator supports physical events. An event oriented
programming style is used to deal with physical events. The

method g from class PhysicalSystem implements physical
events. It is overwritten by the users physical system. The

method is used to detect physical events and to handle them.

Handling the event means mapping the state right before the
event to the state right after the event. The Physolator

framework iteratively detects points in time where physical

events occur. For this iteration Physolator makes use of
method g. Then the physical system is run until event time is

reached. At that point in time the event handler is fired.

The following pictures shows some balls flying in a box.

The arrows indicate velocities. The balls are once a while

collid ing against other balls or against the walls of the box. The
picture on the left shows the state right before the two balls on

the top hit against one another. The right hand side picture
shows the state right after the impact. Due to the impact, the

speed of the two balls changes abruptly. The relationship
between the speeds before the impact event and the speed right

after the impact event is described by physical formulas fired

inside g.

FIGURE VII. Physical Events

VIII. PERFORMANCE MONITORING

With an increasing complexity, performance matters.
Especially, when it comes to real time simulations. As soon as

you are faced with a performance issue, you have to analyze

the CPU load in order to find the bottleneck. Depending on the
physical model, the time consumption for the numerical

procedures could be responsible for the performance problem,
but it could also be the program code for visualization. To find

the bottleneck, Physolator comes with built-in performance
analysis tools.

ACKNOWLEDGMENT

This article could only give an overview of the Physolators

architecture. More details and more examples can be found on
the web page www.physolator.de. Currently, some more

examples are being developed. I am also intending to provide

some educational material for use in a classroom scenario.
Comments are welcome. Feel free to contact me.

REFERENCES

[1] D. Eisenbiegler, “Physolator – Getting Started”, Video Tutorial,
http://www.physolator.de/joomla/index.php/en/manual#GettingStarted

[2] D. Eisenbiegler, “Physolator Programming”, Video Tutorial,
http://www.physolator.de/joomla/index.php/en/manual#PhysolatorProgr
amming

[3] D. Eisenbiegler, “Objektorientierte Modellierung und Simulation
physikalischer Systeme mit dem Physolator”, BoD, 2015, ISBN 978-
3738606829

[4] B. Eckel, “Thinking in Java”, Prentice Hall, 2006

[5] R. Warburton, “Java 8 Lambdas: Pragmatic Functional Programming”,
O'Really, 2015

[6] L. Vogel, “Eclipse IDE: Eclipse IDE based on Eclipse 4.2 and 4.3”,
vogella series, 2013

[7] G. M. Sellers et. al., “OpenGL Superbible”, Pearson Education, 2015.

64

