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Abstract—Physolator is Java based physics simulation 

framework. Physolator supports an object oriented style for 

building physical models. This article describes Physolators core 

architecture and it explains how the framework architecture 
contributes to building physical simulations in a modular, object 

oriented style. 
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I. INTRODUCTION 

Computer based physical simulations are an important tool 
for physicists. Besides that, physical simulations are also used 

in engineering sciences, in computer games, in animations and 
inside e-learning tools. 

Physolator is a Java based framework for building physical 
simulations. Physolator is designed for beginners as well as for 

professionals. It only takes basic Java programming skills and 
little knowlege about physics to get started. The Physolator 

provides a Java based infrastructure that makes it easy for 

beginners to get their first physical simulation up and running. 
At www.physolator.de  there is a video tutorial explaining in 

ten minutes, how to write your first physical simulation [2].  

Physolator is also well suited for professionals. It provides 

powerful object oriented techniques for building complex 
physical simulat ions in a modular style where physical 

components, numerical procedures and graphics components 

are reused in different physical systems. Many of the features 
can be found on the website www.physolator.de. More details 

can be found in [1]. 

II. APPROACHES TOWARDS BUILDING PHYSICAL 

SIMULATIONS 

Physical systems are nothing but computer programs. 
Basically, it only takes a programming language to implement 

a physical simulation program and run it on the computer. 

However, you have to be aware, that some very specific skills 
are required. Sure, you must be familiar with physics. 

Furthermore, you must have an understanding of numerical 
mathematics in order to implement the numerical procedures. 

Finally, you the results of the physical simulations have to be 
visually represented on the screen. This is why you must also 

be familiar with 3D graphics programming.  

There are lots of different ways to build a physical 
simulation. You can build  your physical simulation from 

scratch or you may use one of the libraries and frameworks 
available in the internet. Developing physical simulat ions 

should be done in componentwise and the components should 

be shared inside a community. However, many of the existing 

architectures are not designed for reuse. Furthermore, the big 
variety of architectures makes it very difficult to share 

components. 

Numerical frameworks like MATLAB/Simulink or GNU 
Octave can help you to overcome the burden of implementing 

numerical procedures. They also provide you with a set of 
graphical tools. However, these frameworks use very specific 

programming languages. In order to use these frameworks you 
first have to learn these programming languages. 

III. PHYSICAL SYSTEMS 

Physolator is an object oriented framework that runs 

physical systems. PhysicalSystem is a class provided by the 
Physolator framework. Users of the Physolator implement 

subclasses of PhysicalSystem. After loading these subclasses to 

the Physolator, the Physolator can run the simulat ion. 

 

FIGURE I.  EXAMPLE FOR A PHYSICAL SYSTEM 

When working with Physolator, physical variables are 

nothing but object attributes. Java annotations are used to 
describe relat ions between the variables. The example above 

represents a vertical trajectory of a point mass with an air 
resistance force against the direction of movement. The system 

consists of the physical variables x, v and a, representing the 
height, the speed and the acceleration of the point mass. Java 

annotations are used to define the derivation relationships 

between the variables: v is the first derivative of x and a  is the 
first derivative of v. The annotations also define the physical 

units of the variables. 

public class TestSystem extends PhysicalSystem { 
  
  @V(unit = "m", derivative = "v") 
  public double x = 3; 
  
  @V(unit = "m/s", derivative ="a") 
  public double v = 5; 
  
  @V(unit = "m/s^2") 
  public double a; 
  
  @Override 
  public void f(double t, double h) { 
    a = -9.81 - 0.1 *Math.signum(v)*Math.pow(v,2); 
  } 

}  
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Inside a physical system the method f  contains the 
formulas. In this simple example, there is only one formula. 

The formula describes how to compute the actual value of the 
acceleration a. 

 

FIGURE II.  PHYSICAL SYSTEM AFTER LOADING 

The variables with their init ial values and the formulas 

define the behavior of the physical system. The physical system 
is nothing but an ordinary differential equation. After loading 

the physical system to the Physolator, the Physolator will 
“numerically solve” the differential equation. In other words: 

The Physolator will run the physical system. 

 

FIGURE III.  PHYSICAL SYSTEM DURING RUNTIME 

IV. PHYSICAL COMPONENTS 

The Physolator framework supports a modular, object 

oriented development style. The core elements are scalar 
physical variables. In Java, scalar physical variables correspond 

to object attributes of type double. Step by step more and more 
complex components are build by combin ing scalar physical 

variables to objects and by combining physical variables and 

objects to more complex objects: vectors, point masses, springs, 
rotation objects, grids of point masses, springs, scalar fields and 

so on. 

The following picture shows a more complex physical 

system with a satellite revolving around moon and earth. The 
physical system is build in a modular style. It consists of 

vectors, rotation objects and point masses. Derivation 
relationships are defined on the level of objects rather than on 

the level of scalar physical variables. Each component is not 
only a container for the scalar physical variables, but it  also 

contains its mathematical and physical formulas. Vectors 

contain methods for vector arithmetic and point masses contain 
formulas for gravitation, Corriolis forces and centripetal forces. 

 

FIGURE IV.  OBJECT ORIENTED MODELLING 

Physical components are objects, that contain both: the 

current state of the object (variables) and its behavior (formulas, 
i.e. methods). The objects are linked with one another. Links 

are described via Java annotations. In the above example, a  
point mass contains a link to a rotation object describing the 

rotation of the coordinate system. Due to this link the point 
mass “knows” how to compute its Coriolis and centripetal 

force.  

Physical components are designed for reusability. Once you 

have declared a physical component, you can build several 

instances in different physical systems. You can also use 
inheritance to build variations of the physical components and 

add extra behavior to the components. So far, the point mass 
class contains the physical formulas for gravitation, Coriolis 

force and centripetal force, but it does not yes describe the 
behavior of springs. To add this physical rule to point masses, 

you have to build a subclass and add appropriate formulas by 

overwriting method f. 

Physical components are nothing but Java classes. 

Physolator supports Java 8. In order to improve reusability and 
performance, you can all the features that Java provides: 

generics, inner classes, anonymous inner classes, 
lambdas/closures, enumerations, mult ithreading [4,5].  
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V. PHYSOLATOR ARCHITECTURE 

Most numerical frameworks work with scripting languages. 

The user writes his code in the scripting language and the 

frameworks links the user code by interpreting the scripts. The 
Physolator uses a different approach. Both the framework and 

the user code are written in Java. The user code is loading using 
Javas class loading techniques. 

Physolator makes extensive use of annotations and 
reflection. Annotations and the reflection API are advanced 

elements of the Java programming language [4]. The user 

attaches configuration information to its code by adding 
annotations. During load time, the Physolator creates an 

instance of the class and analyzes the structure of the 
components and subcomponents. This is where the Java 

reflection API is used. Furthermore, the Physolator uses the 
reflection API to read the annotations: derivation relationships, 

physical units, links between objects. 

Running a physical system means applying a numerical 
procedure. The Physolator comes with a set of built -in  

numerical procedures like Runge-Kutta, Fehlberg and 
Dormand-Prince. It supports simulations with a fixed step with 

as well as simulations with variable step widths. Physolator 
supports both single step methods as well as multi-step 

methods like Adams-Bashforth and it also supports predictor-
corrector techniques. As already mentioned, there is a set of 

built-in numerical methods. However, you may also program 

your own numerical procedures, load them to the Physolator 
and use them during the physical simulation. Have a look at [3] 

for details. 

Physolator has an integrated recorder. For every simulation  

time, the recorder stores the values of all variables. Th is data is 
used in different ways. There is a built in plotter for printing the 

function graphs of selected variables (see figure III). The 

recorded data may also be accessed from graphical components 
(see figure V). 

The Physolator implementation is based on Eclipse RCP [6]. 
Eclipse RCP provides Physolator with the look and feel that 

programmers are used to when dealing with integrated 
development environments (IDEs) such as NetBeans, Eclipse 

or IntelliJ IDEA. Physolator, however, is an independent piece 

of software. Neither is it an IDE nor is it a plugin for an IDE. 
The user can choose any IDE to build physical system for the 

Physolator. Physolator comes with a library of classes. To build 
your own physical system, all you have to do is add this library  

to the class path. 

Physolator provides an auto-start mechanism. To get a 

physical system up and running you would usually start the 
Physolator and then manually load the physical system into the 

Physolator framework. Instead you can equip your physical 

system with a main  method, that invokes the start()-Method. 
Physical systems with such a main-method can be started from 

the IDE. Starting a physical system results in starting the 
Physolotor framework and automatically loading the physical 

system into the framework. 

Once a physical system is loaded into the Physolator, you 

can continue developing your code inside the IDE. A reload-

button inside the Physolator allows you to update your physical 
system to the current state from the IDE. 

VI. GRAPHICAL COMPONENTS 

Graphical components visually represent the current state of 

a physical system. Physolator supports both 2D and 3D graphic 
components. Graphical components are attached to physical 

systems. They are loaded whenever a physical system is loaded, 

that references one ore several graphical components. 

In many situations 2D graphics are a good choice for a clear 

depiction of the physical system state. 2D graphics components 
can be used for both: visualization on the screen and high 

quality printed publications. The built-in graphical component 
API provides an adapter for painting the 2D drawing objects to 

the screen using OpenGL. But it  has also an adapter for 
producing scalable vector graphics (SVG). Graphical 

components come with a built-in snapshot functionality. The 

snapshot function produces SVGs. SVGs are well suited for 
high quality printed publications. 

 

FIGURE V.  GRAPHICAL COMPONENT 

Physolator also supports 3D graphical components based on 
OpenGL. The picture of an OpenGL based 3D screen is 

computed by the graphics card. This is why in this case a 
snapshot in can only produce bitmaps and the resolution is 

limited by the screen resolution.  

All graphical components – 2D and 3D – are interactive. As 

soon as your mouse is over the graphical components, 

interactive buttons show up (see figure V). These buttons are 
used for navigating inside the graphics: zooming in and out, 

moving to any direction. Furthermore, there is also a button for 
taking snapshots and another one for changing the settings. The 

2D graphics have a built-in mechanism for drawing scales and 
grid lines. As you navigate inside a 2D graphical component, 

the scales and grid lines are adapted automatically.  

Graphical components provide a parameter mechanism. 
Annotations inside the graphical components define, that the 

values of certain variables are parameters of the graphical 
components. By pressing the settings button, the user can 

interactively change their values.  
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FIGURE VI.  GRAPHICAL COMPONENT PARAMETERS 

You can program a graphical component that is tailored to a 
specific physical system. A lternatively, you can implement a 

generic graphical component that is designed for a specific 
domain and that can be used by different kinds of physical 

system from that domain. Figure V shows a generic graphics 

component for two dimensional point masses. Any physical 
system working with two dimensional point masses can use 

this graphics component without any extra programming work.  

Generic graphical components make use of the built -in  

structure API. The structure API allows the graphical 
component to read the structure of the physical system. In the 

example: How many point masses are in the physical system? 

What are their names? What are their positions and speeds? 
The above example also makes use of the recorder. Figure V 

not only shows the current location of the point masses, but 
also their paths. The paths are drawn using data from prev ious 

points in time.  

VII. PHYSICAL EVENTS 

Physical variables usually are continuous and differentiable 
functions of time. In physics, this is true for many domains. In 

such domains, physical systems are often described using 
ordinary differential equations.  

However, there are also some physical effects, where the 

values of variables change abruptly. The change happens 
within one point in time. This sudden change results in a 

discontinuity of the physical variab les. This kind of physical 
effect shall be called a physical event. Examples for physical 

events are mechanical impacts and breaks, electronic switching 
operations and radioactive decay events. In all this cases, the 

physical model defines, that the event happens in a single point 
in time. In such a case the formulas of the physical model 

describe a functional relationship between the state of the 

physical system right before the event and the state of the 
physical system right after the event. 

Physolator supports physical events. An event oriented 
programming style is used to deal with physical events. The 

method g from class PhysicalSystem implements physical 
events. It is overwritten by the users physical system. The 

method is used to detect physical events and to handle them. 

Handling the event means mapping the state right before the 
event to the state right after the event. The Physolator 

framework iteratively  detects points in time where physical 

events occur. For this iteration Physolator makes use of 
method g. Then the physical system is run until event time is 

reached. At that point in time the event handler is fired.  

The following pictures shows some balls flying in a box. 

The arrows indicate velocities. The balls are once a while 

collid ing against other balls or against the walls of the box. The 
picture on the left shows the state right before the two balls on 

the top hit against one another. The right hand side picture 
shows the state right after the impact. Due to the impact, the 

speed of the two balls changes abruptly. The relationship 
between the speeds before the impact event and the speed right 

after the impact event is described by physical formulas fired  

inside g. 

 

FIGURE VII.  Physical Events 

VIII. PERFORMANCE MONITORING 

With an increasing complexity, performance matters. 
Especially, when it comes to real time simulations. As soon as 

you are faced with a performance issue, you have to analyze 

the CPU load in  order to find the bottleneck. Depending on the 
physical model, the time consumption for the numerical 

procedures could be responsible for the performance problem, 
but it could also be the program code for visualization. To find 

the bottleneck, Physolator comes with built-in performance 
analysis tools. 
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