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Abstract—The globally asymptotic stability for static neural 

networks with time-varying delay is concerned in this paper. By 

delay fractioning technique and taking more delayed-state 

variables into account, a newly Lyapunov-Krasovskii Functional 

was constructed, together with the Jessen integral inequality and 

convex combination method , a delay-dependent global stability 

criterion is obtained, it is less conservative than some existing 

ones. Example is provided to show the effectiveness and reduced 

conservatism of the proposed results. 
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I. INTRODUCTION  

In the past few decades, recurrent neural networks (RNNs) 
have found extensive investigation due to its applications in a 
wide range of fields such as pattern recognition, signal 
processing, combinational optimization, associative memory, 
etc [1]. when RNNs are used to solve a certain problem, 

As mentioned above, the existence, uniqueness and globally 
stability of its equilibrium point is of great both theoretical and 
practical importance. There have been many interesting results 
on global stability in the literature [2-22], and the references 
cited therein.On one hand, in electric implementation, time 
delays are often inevitable due to the finite switching speed of 
amplifiers or finite information processing speed, and they are 
often a resource of instability or oscillation. On the other hand, 
some neural networks with time delays do not have the 
dynamical behavior we need. To solve this problem, there 
exists one way that we can bring suitable time delays into 

neural networks without time delay，Yang and Cao have 

employed delayed projection neural network to solve quadratic 
programming[23]. Li proposed a delayed neural network to 
solve convex programming problems and pointed out that one 
can achieve the exact optimal solutions by choosing suitable 

delays [24]. Therefore, the stability of neural networks with 
time delay is of great importance both in theory and practice. A 
great number of stability results on neural networks with time 
delay have been proposed [4-8,12-22].   

RNNs can be classified into the typical static neural 
networks and local field neural networks, according to whether 
the neuron states(the external states of neurons)or local field 
states(the internal states of neurons)are taken as basic 
variables[2]. For local field neural networks, many interesting 
results on stability analysis have been derived extensively. For 
example, the delay-dependent stability result of the neural 
networks with a constant delay can be found in[16-18], while 
the case of time-varying delays ones were reported in[15,19,20]. 
As far as distributed delays were considered, the stability 
results, can see [21,22] and references therein. 

Though the local neural networks have been investigated 
extensively, to the best of our knowledge, the static neural 
networks have been received relatively little attention, with 
only a few results available. In [4], the authors have studied the 
static neural networks for nonlinear optimization with a 
continuously differentiable objective function and bound 
constraints. A precise theoretical comparative study on the 
dynamics of local field neural networks and static neural 
networks was conducted in [3]. Some sufficient conditions for 
the globally asymptotically stability (GAS) and globally 
exponentially stability (GES) of the static neural networks 
without time delay were given in [5], and the robust GES 
analysis for interval static neural networks via linear matrix 
inequality (LMI) approaches was proposed in [6]. As far as the 
static neural networks with constant delay, the delay-
independent GAS and GES conditions were developed in [7] 
and [10], respectively. By introducing the free-weighting 
matrices and through the use of Newton-Leibnitz formula to 
estimate elaborately the derivative of the constructed Lyapunov 
functional, a delay-dependent GAS result was obtained in[8]. 
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For the static neural networks with time-varying delay, in [9], 
the Jensen integral inequality was used to estimate the 
derivative of the Lyapunov functional without introducing a 
free-weighting matrix, a delay-dependent GAS result was 
derived. 

Inspired by the fact that “the static neural networks have 
been received relatively little attention”, in this paper, based on 
a newly constructed Lyapunov-Krasovskii functional, the delay 
fractioning method and the Jensen integral inequality were used 
to estimate the upper bound of the derivative of the Lyapunov 
functional, a less conservative delay-dependent GAS criterion 
was developed in form of LMIs, together with the convex 
combination method. 

II. PROBLEM FORMULATION 

We consider the following static recurrent neural networks 
with time-varying delays: 

      

   

u t
1

, 1,2, , ,

, 0.

n

i i i i ij j i

j

a u t g w u t t J i n

u t t t



 



 
       

 

   


          (1) 

Or equivalently, in the matrix-vector form 

       
   

u t ,

, 0.

Au t g Wu t t J

u t t t



 

    

   
                            (2) 

where         1 2
, , ,

T

n
u t u t u t u t is the state vector 

associated with the n  neurons; 

            1 1 2 2
, , ,

T

n n
g u t g u t g u t g u t represents the neuron 

activation functions;    1 2
, , , 0;

n ij n n
A diag a a a W w


   is the 

delayed connection weight matrix;  1 2
, , ,

T

n
J J J J is the 

constant input vector from outside the system;  t is the time 

delay satisfying  0 t   and  t  ;   , 0t t    is the 

initial condition of system(1)  

To obtain our results, the following assumption will be 
made throughout this paper: 

Assumption The activation function satisfies the following 
condition 

   
, , , , 1,2, ,

i i

i i

g x g y
l l x y R x y i n

x y

 


     


   (3) 

where , , 1,2, ,
i i

l l i n
   are constants. 

By using the Brouwer’s fixed-point theorem, one can easy 
to prove the existence of the equilibrium point for system(1.2). 

Assuming that  1 2
, , ,

T

n
u u u u
    is an equilibrium point of (1.2) 

and by transformation    x u u
    , system (1.2) can thus be 

rewritten as  

       x t ,Ax t f Wx t t     

    , 0.x t t t                                  (4) 

Where 

        j j j j j j j j
f W x t g W x t u J g W u J

       

By assumption , it is obvious that  

   
 , , 0 0, 1,2, ,

i i

i i i

f s f t
l l s t f i n

s t

 


     
 .     (5) 

Then, systems (1.4) admits an equilibrium point 

  0x t  corresponding to the initial condition   0, 0t t     . 

Lemma[14] For any symmetric positive definite 

matrix 0
T

M M  ,scalar 0   and vector function 

 : 0,
n

R   such that the integrations concerned are well 

defined, the following integral inequality holds. 

         
0 0 0

d d d
T

Ts s M s s s M s s
  

                 (6) 

III.  MAIN RESULTS 

In this section, the delay fraction ,together with Jensen 
inequality are employed to obtain our new delay-dependent 
globally asymptotic stability condition based on a newly 
constructed Lyapuvov-Krasovskii functional, which contains 
more information on state variables by taking more states as 
augment variables. 

Theorem For given ,  and constant 

matrices  1 1 2
, , , ,

n
L diag l l l

    2 1 2
, , ,

n
L diag l l l

   , the origin of system 

(1.4) is GAS if there exist symmetric positive definite 

matrices  , 1,2,3 ,
n n

i
P Q R i

   1,2,3,4
n n

i
R R i

  , 

11 12 13 14

22 23 24 4 4

33 34

44

n n

Q Q Q Q

Q Q Q
Q R

Q Q

Q



 
 
  

  
 
    

, 

nonnegative diagonal matrices  1 11 12 1
, , , ,

n
T diag t t t  2 21 22 2

, , , ,
n

T diag t t t  

 1 2
, , , ,

n
diag      1 2

, , ,
n

diag     such that the following 

LMIs hold. 

0
0,    1,2,3,4;   1,2

i ij
E E E i j     .           (7) 

Where 
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Proof. We construct the following Lyapunov functional 
candidate for system(1.4) 
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
  

 
 

 

  
    

 

       
0

4
3 4

42

d d d d
4 4

t t
T T

t t
x s R x s s x s R x s s




 

 
 



  
      

where 
i

W in   4
V x t denotes the i th row of matrix W . 

In what follows, we compute the time derivative of 

  V x t along the trajectory of system(1.4). 

              1
2 2

T T
V x t x t Px t x t P Ax t f Wx t t     

  ;      (8) 

               2 1 2 1
1

T T
V x t x t Q Q x t x t t Q x t t         

   
2

1
2 2 2

T
t t

x t Q x t
      

                                             (9) 

                  3 3 3
1

T T T
V x t f Wx t Q f Wx t f Wx t t Q f Wx t t       (10) 

the above 2 inequalities hold for  t  . 

By Lemma1, we have 

                4

1 1

2 2
n n

i i i i i i i i i i i i

i i

V x t f W x t l W x t W x t l W x t f W x t W x t  

 

        
    

           2 1
2 2

T T T
x t W L L Wx t f Wx t Wx t       

          2 1
2

T T T T
x t A f Wx t t W L L Wx t        

          2 ;
T

f Wx t W Ax t f Wx t t                    (11) 

    

 

11 12 13 14

22 23 24

5

33 34

44

   

4
3

, , ,
4 2 4

2

3

4

T T T T

x t

Q Q Q Q x t

Q Q Q
V x t x t x t x t x t

Q Q x t

Q

x t



  




 
 
  

                                                   
   

  

 

 

 

11 12 13 14

22 23 24

33 34

44

4

3
2 ,

4 2 4
3

4

T T T T

x t

Q Q Q Q

x tQ Q Q
x t x t x t x t

Q Q

x tQ

x t




  







  
  

  
    

                                               
   

    (12) 

           
2 3

4
6 1 2 3 4 1

d
4 4

t
T T

t
V x t x t R R R R x t x s R x s s





  



 
     
 



            2 4
3 2 3 4

44 2

d d d .
4 4 4

t t t
T T T

tt t
x s R x s s x s R x s s x s R x s s

 

 

   

 
          (13) 
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In order to estimate an elaborate upper bound of   6
V x t , 

different cases are considered as follows. When  
3

4
t    , we 

have  

       
 

   
 

3 3

4 4
1 1 1

d d d .
4 4 4

t t t t
T T T

t t t t
x s R x s s x s R x s s x s R x s s

 


  

    

  
     

Define  
1

4 4 t 





 , then  

   
 

      
 

     
 

1 1 1

3
d d d

4 4

t t t t t t
T T T

t t t
x s R x s s t x s R x s s t x s R x s s

  

  

 
  

  

  

 
      

 
    

      
 

        
 

1 1 1
d 1 d

t t t t
T T

t t
t x s R x s s t x s R x s s

 

 
    

 

 
       ; 

   
 

     
 

      
 

3 3 3

4 4 4
1 1 1

3
d d d

4 4

t t t
T T T

t t t t t t
x s R x s s t x s R x s s t x s R x s s

  

  


   

  

  

 
      

 
    

     
 

     
 

3 3

4 4
1 1 1

3 3
d d

4 4

t t
T T

t t t t
t x s R x s s t x s R x s s

 

 
    

 

 

   
       

   
 

 

Therefore, Lemma2 gives that 

             
3

4
1 1

d
4

t
T T T

t
x s R x s s x t t x t R x t t x t






   




           
   

     1

3 3

4 4

T Tx t x t t R x t x t t   
      

            
        

     1 1

3 3

4 4

T Tx t x t t R x t x t t    
      

            
        

           1 1
1

T T
x t t x t R x t t x t              
    . (14) 

and 

   2
3 2 2

4

3 3
d

4 2 4 2 4

t
T T T

t
x s R x s s x t x t R x t x t





    



          
                  

          


.   (15) 

   4
3 3

2

d
4 4 2 4 2

t
T T T

t
x s R x s s x t x t R x t x t





    



          
                  

          


.  (16) 

       4 4

4

d
4 4 4

t
T T T

t
x s R x s s x t x t R x t x t

  


      
            

      


.    (17) 

Moreover, according to (1.5)， there exists nonnegative 

diagonal matrices  1 11 12 1
, , , ,

n
T diag t t t  2 21 22 2

, , ,
n

T diag t t t ，such that 

the following inequalities hold,  

                1 1 2 1 1 2 1
2 2 2 0

T T T T T
x t W T L L f Wx t x t W LT L Wx t f Wx t T f Wx t   

.(18) 

              2 1 2 1 2 2
2 2

T T T T
x t t W T L L f Wx t t x t t W LT L Wx t t        

  

       2
2 0

T
f Wx t t T f Wx t t    

.               (19) 

From (1.8)～(1.19),we have 

                1 1 2 1 1 2
2 2

T T T T
V x t V x t x t W T L L f Wx t x t W LT L Wx t   

              1 2 1 2
2 2

T T T
f Wx t T f Wx t x t t W T L L f Wx t t     

 
             1 2 2 2

 2 2
T T T

x t t W LT L Wx t t f Wx t t T f Wx t t        

     0 1 1 11 1 12
1

T
t E E E E t         

    (20) 

where 

        
 

      
3

,  ,  ,  ,  ,  ,  ,  ,  
4 2 4 2

T T T T T T T T T T
t

t x t x t x t x t x t x t t x t f Wx t f Wx t t
  

   
       
                         

0 1 11 12
, , ,E E E E are given as above. 

Note that
1

0 1  , the above left hand of (1.20) induces a 

convex combination of matrices 
11

E and
12

E , which are negative 

definite only if the vertices are. According to (1.18), (1.19), 
(1.9) 

and (1.7),together with S-procedure. One can easily get 
there exists a positive constant  such that  

   0 1 1 11 1 12
1 , , , , , , , ,E E E E diag I o o o o o o o o        , 

By pre- and post-multiplying the above inequality 

with  T
t ,  t respectively, one can easily achieve 

          
2

0 1 1 11 1 12
1

T
V x t t E E E E t x t            

Which implies the origin of system(1.4) is globally 

asymptotically stable for the case of  
3

4
t    . 

Similarly, when 

 
1 3

2 4
t    ,  

1 1

4 2
t    ,  

1
0

2
t   ,respectively, one can get  

        2 21 2 22
1

T
V x t t E E t        , 

        3 31 3 32
1

T
V x t t E E t       

, 

        4 41 4 42
1

T
V x t t E E t       

, 

By the same way to the first case.  

Where  
2

3 4 t 





 ,  

3

2 4 t 







 
4

4 t 





 , respectively.  

For simplicity, the details were omitted here, and we 
complete the proof. 

Remark1 In many literatures, the time-varying 
delay  t must be differentiable and   1t  . But in this paper, 

the constraint   1t  can be relaxed because of the positive 

definiteness of matrices 1 2
,Q Q and

3
Q ,then the constraint 
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condition   1t  can be relaxed as  t  , where  is not 

necessarily smaller than 1. 

Remark2 By taking states 
3

, , ,
4 2 4

x t x t x t
       

       
     

    , ,x t x t t    

 
2

t
x t

 
  

 
as augment variables, the stability condition in 

this paper utilizes more information on state variables, this is 
an efficient method to derive a less conservative stability result. 

Remark3 The delay interval  0,  is divided into 4 

segments, each segment has a different positive Lyapunov 
matrix, and matrix used to describe the relation between 
different segments is also set, which has potential to yield less 
conservative stability condition. 

Remark4 To reduce the conservation, an elaborate 
estimation of the upper bound of the integral item in   6

V x t  is 

made. For example, when  
3

4
t    ,    

3

4
1

d
4

t
T

t
x s R x s s





 


   is not 

simply up bounded as    
 

1
d

4

t t
T

t
x s R x s s





 


  ,but    

 

3

4
1

d
4

t
T

t t
x s R x s s





 


  is 

also considered. Especially, the latter is not over bounded as 

     
 

3

4
1

3
d

4

t
T

t t
t x s R x s s




 





 
  
 

 ,but rather       
 

3

4
1

d
t

T

t t
t x s R x s s




 




   is taken 

into account. The same way is conducted on the other 3 
integral items in   6

V x t . 

Remark5 Be different with the approach as in [8], the 
free-weighting matrix was not introduced in this paper. As it 
was pointed that the free-weighting matrix may has no any 
contribution to a less conservative stability condition, while 
the computation complex is burdened.  

It is worth noting that theorem 1 does not necessarily 
require 1  , that means it can be applied to fast time-varying 

delays as well as slow ones, only if  is known. While in 

practice,   is unknown or  t is not differentiable, by setting 

1 2 3
0Q Q Q   , a delay-rate-independent criterion for fast time-

varying delays can be obtained easily as follows. 

Corollary For given  and constant 

matrices  1 1 2
, , , ,

n
L diag l l l

    2 1 2
, , ,

n
L diag l l l

   , the origin of system 

(1.4) is GAS if there exist symmetric positive definite 

matrices ,P  1,2,3,4
i

R i  , 

11 12 13 14

22 23 24

33 34

44

Q Q Q Q

Q Q Q
Q

Q Q

Q

 
 
 

  
 
    

,nonnegative diagonal 

matrices  1 11 12 1
, , , ,

n
T diag t t t  2 21 22 2

, , , ,
n

T diag t t t  

 1 2
, , , ,

n
diag      1 2

, , ,
n

diag     such that the following 

LMIs hold. 

0
0,    1,2,3,4;   1,2

i ij
E E E i j      

where 

 
2 4

0

11 2 1 11 1 1 2

1

2 2
4

T T T T

i

i

E PA AP A W L L W Q W L T L W A R A




 
           

 
 , 

0

66 1 2 2
2

T
E W LT L W  , 0

88 1
2E T  , 0

99 2
2E T  ; 0 0

ij ij
E E , for other ,i j as defined in 

theorem1. 

IV. CONCLUSION 

By a newly constructed Lyapunov-Krasovskii functional, 
together with the delay fractioning method and convex 
combination technique, an improved delay-dependent globally 
asymptotical stability sufficient condition has been obtained. 
The condition is given in terms of LMIs and thus can be readily 
checked through the standard numerical software. Example 
shows significantly that delay fractioning method and the 
elaborate bounding technique convex combination can reduce 
the conservatism effectively. 
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