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Abstract—Consider a random variable whose measure 
probability is the sum of an absolutely continuous part with 
respect to the Lebesgue measure and a discrete measure. In this 
work is provided a deconvolution estimator density of the 
continuous part and also the estimated amplitudes of discrete 
part when the observations ara taken with a noise error.  

Keywords-component; density probability; kernel estimate; 
deconvolution 

I. INTRODUCTION 

This paper consider a random variable X  whose 
probability measure μ  is the sum of an absolutely continuous 
with respect to the Lebesgue measure and a discrete measure:  

=1
= ( ) .

q

m m
m

d f x dx a λμ δ+∑                   (1) 

 where the number q  is supposed nonnegative integer and 
known. f  is the density of the continuous variable which is 
supposed to be a nonnegative uniformly continuous function. 
The real positive number ma  is the amplitude of the jump at 

mλ  and is assumed unknown. δ  is the Dirac measure. The 

jump points ( mλ  are known real numbers. The estimation of 
the continuous part f  is given in general case see sabre[11]. 
A statistical test used to verify the existence of jump at any 
point is studied in sabre[12]. 

This work considers the case where the observation is 
taken with errors:  = ,i i iY X ε+  

 where the errors iε  are independent and identically 
distributed (i.i.d) random variables with known density h  , 
and the random variables iε  and iX  are independent. Such a 
model of measurement contaminated with error exists in many 
different fields such as (physics, economics, medical, 
biology …), where the measurements cannot be observed 
directly. The practical problems of deconvolution can be found 

in Medgyessy [8] and Carroll and Ruppert [4], Van[14], Wang 
[15] . 

Our goal is to estimate the density ( )f x  for all real 

numbers x  and the amplitude ma  of the jump points. So we 
consider two cases: the first case, when x  is outside of the 

jump point, [ ]( )=1 ,q
m m mx α β∉∪ , we use the deconvolution 

kernel estimate as in Carroll and Hall [3], Stefanski and 
Carroll [13], Fan [1][2] and Masry [5], [6], [7]. For the other 
points [ ]( )=1 ,q

m m mx α β∈∪ , we smooth the deconvolution 
estimate by two windows satisfying some conditions as in 
Sabre [11] [10] [9]. This paper gives an estimator ˆ ( )ma x  

converging to the amplitude ma  if = mx λ  or converging to 

zero if = mx λ . We can use this result to verify the presence 
of the jump at any point. 

The motivation of this work is that, in practice, it often 
occurs that the observed data have the same distribution as the 
one of a usual law except in some points where we have a 
discontinuity of the law observed. In this case we can consider 
that the law of observed data is the sum of the usual law with 
another discrete law. It is therefore interesting to estimate the 
density of the continuous part, especially at jump points. For 
example when we consider the regression model 

= ( )Y g X ε+ , ε  must be a centered Gaussian variable. To 

show that we take a sample of the residues = ( )i i iY g Xε −  
= 1,2,...i n . If the empirical residuals distribution is 

Gaussian except at discrete points, for example 1λ  and 2λ , so 
the law of ε  can be written as:  

1 21 2
= ( ) .d f x dx a aλ λμ δ δ+ +                    (2)

 

If we show that f  is the density of a centered gaussian 
variable, we are sure that we must change our model by 
adding an other discrete variable. 

A concrete application of this model concerns the 
measurement of the surface of a plant's submarine taken by 
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aerial images in different areas of the Atlantic Ocean. 
Theoretically, the images are taken with iid random errors 
already known by the device manufacturer of digital imaging, 
it is a centered normal distribution. Thus we can consider the 
model =i i iY X ε+ . Moreover, the random passage of group 
of fish influences the distribution of data by increasing the 
observed to reach a constant value. Thus we consider that the 
measure is the sum of two measures, one continuous and the 
other discrete. 

This paper is organized as follows. In the second section 
we estimate the density outside the neighborhood of the jump 
point and we study the estimation of the density inside the 
neighborhood of jump point. In the third section we estimate 
the amplitude of the jump point and we give the exact rates of 
convergence of the estimate. We finish by studying the 
numerical simulation of this estimator. 

II. KERNEL ESTIMATE OF THE DENSITY FUNCTION 

Consider a random variable X  whose probability measure, 
,μ  is defined by (1). Our goal is to estimate, for every real 

number x , the density function f  . Let K  be a bounded 
even decreasing kernel such that | ( ) |= 0lim y yK y→∞ . hΦ , 

XΦ , YΦ  and KΦ  are the characteristic functions of ε , X , 
Y  and K  respectively. The independence of X  and ε  
gives: ( ) = ( ) ( )Y Xt t tεΦ Φ Φ . 

Suppose that the characteristics functions hΦ  and KΦ  
satisfy the following hypothesis: 

a) | ( ) |> 0h tΦ  

b) 1( ) /K h
tt L L
b

∞⎛ ⎞Φ Φ ∈⎜ ⎟
⎝ ⎠

I , for all real number b . 

To estimate the density function ( )f x  we distinguish two 

cases: when [ ]=1
= ,q

m mm
x A α β∈ U  and x A∉ . 

A. The Estimation of the Function f  Outside A  

Let x  be a real outside of the jump point ( )x A∉ . As in 

Stefanski et Carroll [13] et Fan [2] we consider ( )n̂f x  the 

deconvolution kernel estimate of ( )f x  : 

( )
=1

1ˆ =
n

j
n bn

jn n

x Y
f x W

nb b
−⎛ ⎞

⎜ ⎟
⎝ ⎠

∑
, where

 (2)where 

( ) ( )1= ,
2 ( / )

Kitx
bn R

h n

t
W x e dt

t bπ
− Φ

Φ∫
                    (3) 

 and { } =1n n
b ∞

 is a positive real sequence such that nb  

converges to zero. From b) it is easy to see that bW  is 

integrable and ( ) = 1bW t dt∫ . The following results show that 

ˆ ( )nf x  is asymptotically unbiased estimator of ( )f x  and 
gives the rate of the convergence of the bias. 

Lemme 1 Let x  be a real outside A , then ( )n̂f x  is an 

asymptotically unbiased estimate. If f  is twice differentiable 
and its partial derivatives are continuous and bounded and 

2 ( ) <x K x dx ∞∫ , we have:  

( ) ( ) ( )2 1 1ˆ ( ) = O O .n n
n n

E f x f x b K
b b

⎛ ⎞⎛ ⎞
− + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

Proposition 1 Under the conditions of lemma and chosen 

nb  such that 2 1
nnb β +  converges to infinity, then  

( ) 2 1
=1

1ˆ ( ) = 1 ,
q

n m
mn

var f x O a D
nb β +

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ where 

( ) ( ) 222= 1/ 2 .KD B t t dtβπ
+∞

−∞
Φ∫  

From Fan [2] ,  it is easy to show  the lemma1 and 
proposition1  

B. Estimation of f  in Neighborhood of Jump Points 
Let x  belong to A . As in Sabre[11], we smooth the 

deconvolution estimator by two windows defined as follows:  

( ) ( ) ( )ˆˆ = ,n n ng x S x u f u du−∫  

 where n̂f  is defined in (2) and ( )nS v  is defined by:  

( )

( ) ( )
( )

( )
( ) ( )

( )

( )

2
2 1

1

2

1

= ,
1

n
n n

n
n

n

n

MU v U v
MS v
M
M

−

−
 

 where the windows functions ( )1
nU  and ( )2

nU  satisfy: 
( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )1 1 1 1 2 2 2 2= ; =n n n n n nU t M U tM U t M U tM
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 with ( )1
nM  and ( )2

nM  are positive real sequences satisfying     
( )

( )

2

1 0n

n

M
M

→  and ( ) ( ); 0, = 1, 2r r
n n nM M b r→+∞ →         

 The functions ( )1U  and ( )2U  are positive even integrable, 
vanishing outside of the interval [ ]1,1−  and satisfying 

( ) ( )
1

1
= 1,iU x dx

−∫  for = 1,2i , and    

( ) ( )( ) ( ) ( )( ) ( ) ( )
2 2 1 1

1 1

1 1= 0 , .n n
n n

U M U M
M M

θ θ θ
⎤ ⎡−

− ∀ ∈⎥ ⎢
⎦ ⎣

 

 Choose K  such that ( )1

1 1

n n n

K
b b M

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 converges to zero. 

Theorem 1   Let x  belonging to A . 

If f  is twice differentiable and its 
partial derivatives are continuous 
and bounded, we have   

( )( ) ( ) ( ) ( )2 1

1 1 1ˆ = .n
nn n n

E g x f x O O K
bM b M

⎛ ⎞⎛ ⎞ ⎛ ⎞
− + ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠  

2) Under the conditions of lemma 1 and suppose that 
2 1
nnb β +  goes to infinity, then  

( ) 2 1
=1

1ˆ ( ) = 1 ,
q

n m
mn

var g x O a D
nb β +

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑

 

Proof: 

1) Using the definition of ˆng  in (14), we obtain  

( ) ( )( ) ( ) ( ) ( )( )ˆˆ =n n nE g x f x S x u Ef u f x du− − −∫  

                       

( )

( )

( )

( )

1 1
1 1

11
11

=
x x

M Mn n
xx

MM nn

− +
+∞

−∞ +−
+ +∫ ∫ ∫

 

1 2 3= .E E E
Δ

+ +  

 To show that 2E  is null, we use the following change of 
variable = .x u v−   

Now showing that 1E  and 3E  converge to zero. 

utting =x u v−  in the integral of 3E  we obtain  

( )

( )

( )
1
1

3 2

1

1= ( ) ( )
1

Mn
n n

n

n

E D v P v dv
M
M

−

−∞

−
∫ , where 

( ) ( ) ( )( ) ( ) ( ) ( )( )( )2 2 2 2 1 1( )n n n n nD v M U M v M U M v= − and 

( ) ( )( )ˆ( )n nP v Ef x v f x= − −  

The function ( )1U  being null outside of [ ]1,1 ,−  then 

( )1U  ( )( )1
nM v  is null when v  belongs to 

( )1

1, ,
nM

⎡ ⎤
−∞ −⎢ ⎥
⎣ ⎦

 this 

implies
( )

( )

( ) ( ) ( ) ( )( )
1
1

2 2 2
3 2

1

1= ( ) ,
1

Mn
n n n

n

n

E M U M v E v dv
M
M

−

−∞

−
∫ wher

e ( ) ( )( )ˆ( )n nE v Ef x v f x= − −  

Putting ( )2 = ,nM v u  and using the fact that ( ) ( )2U v  is 

null outside of the interval [ 1,1],−  we obtain  

( )

( )

( )

( )

( ) ( ) ( ) ( )
1 2

3 22 2

11

1 ˆ= .
1

nMnn n
Mn

n

vE U v Ef x f x dv
M M
M

⎛ ⎞⎛ ⎞
+ −⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠−

∫  

Similarly, we show that  

( )

( )

( )

( )

( ) ( ) ( ) ( )
1 2

1 22 2

11

1 ˆ= .
1

Mnn n
Mn

n

vE U v E f x f x dv
M M
M

⎡ ⎤⎛ ⎞⎛ ⎞
− −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦−

∫  

The last expressions of 1E  and 3E  can be regrouped as 
follows:  

( )

( )

( )

( )

( ) ( ) ( ) ( )
1 2

22 2

11

1 ˆ= .
1

'

Mnn n
Mn

n

vE U v E f x f x dv
M M
M

⎡ ⎤⎛ ⎞⎛ ⎞
± −⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦−

∫  

Showing that 'E  converges to 0 . We show that 
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( ) ( )2
ˆ = ' '

n n
n

vEf x f x R T
M

⎛ ⎞
± − +⎜ ⎟⎜ ⎟

⎝ ⎠  

with  
( )

( ) ( )
21=' n

n
n n

vx z
MR K f z dz f x

b b

⎛ ⎞± −⎜ ⎟
⎜ ⎟ −
⎜ ⎟
⎜ ⎟
⎝ ⎠

∫  

and  
( )

( )
2

=1

1= .
mm

' ' n
n j m

jn n

vx
MT a K f

b b

λ
λ

⎛ ⎞± −⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  

The term '
nR  , can be written as  

( ) ( ) ( )2= .'
n n

n

vR K z f x b z dz f x
M

⎛ ⎞
± − −⎜ ⎟⎜ ⎟

⎝ ⎠
∫

 

Using Taylor's formula, we obtain:  

( ) ( ) ( ) ( )2 2= '
n n

n n

v vf x b z f x b z f x
M M

⎛ ⎞ ⎛ ⎞
± − + ± − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠  

( ) ( )

2

2 2 ,''
n n

n n

v vb z f x b z
M M

τ
⎛ ⎞⎛ ⎞ ⎛ ⎞

± − + ± −⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠  

 where τ  is a real number verifying 0 < < 1.τ  K  is an 
even density of probability.  The derivatives 'f  and ''f  are 

bounded and ( )2 < ,z K z ∞∫  therefore  

( ) ( )

2

2
2 2

1 1= .'
n n

n n

R O b
M M

⎛ ⎞⎛ ⎞
⎜ ⎟+ +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

( )2
nM  tends to infinity and ( )2

n nM b  tends to zero, hence  

( )2

1='
n

n

R O
M

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

. The fact that ( )2U  is bounded, we 

have  

( )

( )

( )

( )

( ) ( ) ( )

1 2
22 2

11

1 1=
1

'
nMnn n

Mn
n

U v R O
M M
M

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠−

∫
 

For the term ,'
nT  we distinguish two cases: 

a) Let = mx λ  with { }1,..., .m q∈  Since  

( ) ( ) ( )1 2 2

1 1 ,
n n n

v
M M M

≤ ≤ K  is even and decreasing, we 

obtain :  ( )1

1 1= .'
n

n n n

T O K
b b M

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

b) Let ,mx λ≠  for all { }1,...,m q∈ , it is clair that  

( )1

1 1= .'
n

n n n

T O K
b b M

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

2) Now showing that the variance converges to zero. We 
have 

( )
( )

( )

( ) ( )( )
22

22 =1

1

1ˆ ( ) =

1
n

k
n

n

var g x E J k E J k
M
M

⎡ ⎤
−⎢ ⎥

⎣ ⎦⎛ ⎞
−⎜ ⎟

⎝ ⎠

∑  

with  ( ) ( )

( )

( ) ( ) ( )

1 2
2 2

1

ˆ= 1 .k

Mn n
Mn

vJ k U v f x dv
M

⎛ ⎞
+ −⎜ ⎟⎜ ⎟

⎝ ⎠
∫  

From Cauchy-Schwartz's inequality, we show that 

( ) ( )

( ) ( ) 12
2

22

1
1ˆ 1 .

k

k n
bn

n nn

vx Y
Mvvar f x E W

nb bM

⎛ ⎞⎛ ⎞+ − −⎜ ⎟⎜ ⎟⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟+ − ≤⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 
 

On the other hand  we show that 

( ) ( ) 12
2

2

1
1

k

n
bn

n n

vx Y
ME W

nb b

⎛ ⎞⎛ ⎞+ − −⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠  

( ) ( ) ( )
2

2

1 * 1 k
b nn

n n

vW z f h x b z dz
nb M

⎛ ⎞
+ − − +⎜ ⎟⎜ ⎟

⎝ ⎠
∫
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( ) ( ) ( )
2

2
=1

1 1
p

k
m b m nn

mn n

va W z h x b z dz
nb M

λ
⎛ ⎞

+ − − −⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∫
 

2 2

2 2=1

p

b m bn n
mn n

cste csteW a W
nb nb

≤ + ∑
 

2

2=1
.

p

m bn
mn n

cste cste a W
nb nb

⎛ ⎞
≤ +⎜ ⎟
⎝ ⎠

∑  

From lemma 1, we get 

( ) ( ) ( )( )2 12
=1

ˆ 1 1 1 1 .
p

k
m

mnn

v cstevar f x a D o
nbM β +

⎛ ⎞⎛ ⎞ ⎛ ⎞
+ − ≤ + +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

∑

Thus,    ( ) 2 1
=1

1ˆ( ) = 1 .
p

m
mn

var g x O a
nb β +

⎛ ⎞⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑  

III. ESTIMATION OF THE AMPLITUDES OF JUMP POINTS 

Let ( )a x  a real function defined by:  

( ) { }
{ }

0 1,...,
=

1,..., =
m

m m

if for all m q x
a x

a if m q x
λ

λ
∈ ≠⎧⎪

⎨ ∃ ∈⎪⎩  

Choosing K  such that ( )0 0K ≠  and 

( )2lim = 0y y K y→∞ . Consider the following estimator  

( ) ( ) =1

1 1ˆ = ,
0

n
j

n hn
i n

x Y
a x W

K n h
−⎛ ⎞

⎜ ⎟
⎝ ⎠

∑  where the 

function hn
W  is defined in (3) and nh  is a real positive 

sequence converging to zero. The objective of the following 
theorem is to show that ( )ˆna x  is an asymptotically unbiased 

estimator of ( )a x . 

Theorem 2   For all x R∈  

1) ( )( ) ( )ˆ =lim n
n

E a x a x
→+∞

 

2) If f  is twice differentiable and its partial derivatives 
are continuous and bounded, then  

( )( ) ( ) ( )ˆ = .n nE a x a x O h+
 

 Theorem 3 Suppose that ( )h tΦ  and ( )K tΦ  are twice 
differentiable and their partial derivatives are continuous and 
bounded, such that    

a) ( ) > 0h tΦ  

b) ( ) =limt ht t Bβ
→+∞ Φ , for some 1β ≥ , and 0,B ≠  

c) ( )2
,1 < ,Kt t dtβ

βδ
− Φ ∞∫  ( )1 < ,'

Kt t dtβ − Φ ∞∫  

( ) <''
Kt t dtβ Φ ∞∫ . If *f h  is continuous at x  and at 

mx λ−  for = 1,...,m q , then  

( )( ) ( ) ( )2 1

=1

ˆ = *lim
q

n n m m
n m

nh var a x D f h x a h xβ λ−

→+∞

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
∑ w

here ( ) ( ) 222= 1/ 2 .hD B t t dtβπ
+∞

−∞
Φ∫  

Proof: From the above results, we get 

( )( ) ( )
2 1

2

1 1ˆ = .
0n hn

n

x Yvar a x E W O
nK h n

⎛ ⎞⎛ ⎞− ⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠
 

 Putting  

( )
2

1 2

1= .
0

j
n hn

n

x Y
A E W

nK h
⎛ ⎞−⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  

( ) ( )

( ) ( )

2
2

2
2

=1

1= *
0

1
0

hn
n

q
m

m hn
m n

x zW f h z dz
nK h

x za W h z dz
nK h

λ

⎛ ⎞−
+⎜ ⎟

⎝ ⎠
⎛ ⎞− −
⎜ ⎟
⎝ ⎠

∫

∑ ∫
 

 The functions *f h  and h  are continuous at x  and at 

mx λ−  for all { }1,..., ,m q∈  we obtain  

( ) ( )2 1
1

=1
= * .lim

q

n n m m
n m

nh A D f h x a h xβ λ−

→+∞

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
∑

 

Since 2 1
nh β −  tends to zero, we deduce  

( )( ) ( ) ( )2 1

=1

ˆ = * .lim
q

n n m m
n m

nh var a x D f h x a h xβ λ−

→+∞

⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
∑

 

IV. CONCLUSION 
We have presented in this paper some results about the 

deconvoltion estimation of the density of the continuous part 
and the estimation of the amplitude of jump point. This work 
could be applied to other cases when the distribution contains 
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points of discontinuity that risks being badly treated by sharing 
interval distribution or by using Monte Carlo method. The 
proposed methods can be extended to other applications in 
several sectors. Indeed, the control of the quality for a product 
manufactured in the auto industry measures the pollution of 
automobile. The distribution can follow a continuous law 
except some observations which are taken when there is fog 
and reached the constant value (point of the jump). In 
oceanography when we observe, by using a camera placed at a 
certain depth in water the length of the fishes. The distribution 
may represent some jumps due to the acceleration of 
movement during the passage of a predator. In Astronomy the 
repeated passage of an object that prevent the vision of stars 
(cloud, bird, ...) can create a jump of data. This work could be 
supplemented by the study of the central limit theorem and by 
giving a test for verifying the existence jump points and their 
localizations as well as the study of optimal smoothing 
parameters using cross validation techniques that have proven 
in this field. 
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