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Abstract—Numerical procedure is developed for modeling of a 
planar light-emitting diode (LED) with top metal electrode 
patterned like a mesh with square cross sectional strips. The 
procedure is applied for modeling LED output performance at 
different parameters of the mesh-like electrode. Our numerical 
analysis predicts that the maximum output can be achieved at the 
mesh opening size around 600 nm. 
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I. INTRODUCTION 
Applications of semiconductor light-emitting diodes (LEDs) 

in lighting and illumination stimulate intensive   research 
focused on the enhancement of light extraction of the LEDs [1]. 
Recently, significant enhancement of optical output has been 
demonstrated for blue GaN/InGaN LED with top metal 
electrode designed like a mesh [2]. Such patterning of metal 
electrode results in light emission through the windows in the 
meshed electrode as shown in Figure 1-(a), where the dark 
central region corresponds to the solid round shaped n-
electrode. The enhancement of optical output was related to 
potential profile created by meshed electrode in the plane of p-
n-heterojunction [3]. It is expected that a peak output can be 
obtained at a certain range of the mesh pitches  

Light generation and extraction in the LED with 
nonuniform current injection was considered in [4], where the 
strips of the mesh-like metal electrode were represented by the 
circular cross sectional wires of finite radius. However, the 
model has some limitations; in particular, it does not allow to 
vary individually the width or thickness of the strips. In this 
paper, we report a numerical procedure and modeling of the 
LED with the mesh strips having square cross section. The 
finite element method (FEM) is employed to calculate electric 
potential distributions. The developed procedure is used to 
model the spatial distributions of electric potential along the 
active region and output power density along the mesh 

openings, and total optical output power at different mesh 
pitches. 

II. OUTPUT POWER OF THE LED 
The power density of light emitted from unit volume with 

the position (x, y, zact) in the active layer is given by the 
following equation [5] 

  

 
FIGURE I. (A) BLUE LED EMISSION THROUGH THE OPENINGS OF 

THE MESHED ELECTRODE. (B) SCHEMATIC LED STRUCTURE WITH 
BOTTOM SOLID N-ELECTRODE AND TOP P-ELECTRODE 

PATTERNED AS A MESH. (C) BI-PLANE COMPUTATION MODEL FOR 
THE UNIT CELL OF THE LED. 
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Δ𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎) = 𝜂𝜂 ℎ𝜈𝜈
𝑞𝑞Δ𝑧𝑧

𝐽𝐽(𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎)                     (1) 
where zact is z coordinate of active layer, η is the internal 
quantum efficiency, h is Planck’s constant, ν is the frequency 
of output light, q is the electric charge, ∆z is the thickness of 
active layer, and J(x, y, zact) is the position-dependent injected 
current. Therefore, the power density generated in an 
infinitesimal volume dV=dxdydz is calculated as follows 

d𝑃𝑃(𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 ) = 𝜂𝜂 ℎ𝜈𝜈
𝑞𝑞
𝐽𝐽(𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑                  (2) 

The injected current distribution J is determined by an 
electric potential distribution φ 

𝐽𝐽(𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎 ) = 𝐽𝐽0 exp � 𝑞𝑞
𝑘𝑘𝑘𝑘
𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑎𝑎𝑎𝑎𝑎𝑎)�               (3) 

where k and T are Boltzmann constant and the temperature in 
the unit of Kelvin, respectively. The electric potential 
distribution can be obtained from a solution of Laplace 
equation with voltage applied to the meshed top electrodes as 
boundary conditions. The saturation current density J0 may be 
estimated from a set of physical parameters or from the injected 
current measured as a current in the external circuit [4].  

On the other hand, the power of light which can be 
extracted from the mesh opening is calculated as the integration 
of the power from fractional volume in the active layer. The 
integration should be performed within an acceptance circle 
since the light is totally internally reflected if the incident angle 
exceeds a critical angle. Thus, the output power density at the 
position (x, y, zopn) of the mesh opening is calculated as the 
integration over an acceptance circle 

P�𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜� = ∫ cos𝜃𝜃𝑖𝑖
4𝜋𝜋𝑟𝑟2

 T(𝜃𝜃𝑖𝑖)𝑑𝑑𝑑𝑑𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐             (4) 
where r is the distance between a position on the active layer 
and a position on the mesh opening of the top metal electrodes, 
θi is the angle of incidence, and T(θi) is the angle dependent 
transmission coefficient between the semiconductor air 
interface. The total output power of the system is the 
multiplication of the number of mesh openings with integration 
of (4) 

P𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜 ∫ 𝑃𝑃�𝑥𝑥,𝑦𝑦, 𝑧𝑧𝑜𝑜𝑜𝑜𝑜𝑜�𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑜𝑜𝑜𝑜𝑜𝑜             (5) 
where Nopn is the number of mesh openings (unit cells). 

III. COMPUTATIONAL MODELING 
Our computational modeling procedure consists of the 

following components: 

1. Solve the Laplace equation with boundary conditions by 
the finite element method to obtain the electric potential. 

2. Apply Gauss quadrature rule in a rectangular region 
(mesh opening) to calculate total output power. 

3. Perform Gauss circular rule to supply sampling points for 
the Gauss quadrature in 2. 

4. Construct scattered data interpolation of the finite 
element solution (electric potential) for sampling of 
electric potential value at arbitrary position. 

A. Finite Element Modeling for Electric Potential 
Computation 
In previous study, an analytical model for an array of 

charged parallel wires of circular cross section was used for 
calculation of potential distributions [2]. More realistic 
situation of mesh strips with square cross section requires 
solving three dimensional Laplace equation 

� 𝜕𝜕2

𝜕𝜕𝑥𝑥2
+ 𝜕𝜕2

𝜕𝜕𝑦𝑦2
+ 𝜕𝜕2

𝜕𝜕𝑧𝑧2
�𝜙𝜙(𝑥𝑥,𝑦𝑦, 𝑧𝑧) = 0                (6) 

with its boundary condition φ(x, y, z)|node = const. applied at the 
top metal electrodes. The Laplace equation (6) can be rewritten 
in the weak form via the Galerkin’s formulation.  

∭ ∑ 𝑑𝑑[𝑁𝑁]𝑇𝑇

𝑑𝑑𝑥𝑥𝑖𝑖

𝑑𝑑[𝑁𝑁]
𝑑𝑑𝑥𝑥𝑖𝑖

3
𝑖𝑖=1𝑉𝑉 𝑑𝑑𝑑𝑑{𝜙𝜙} = 0                   (7) 

Our finite element discretization is realized by the 
decomposition of field into the three dimensional isoparametric 
quadratic finite elements. 

B. Gauss Circular Rule for Numerical Integration within 
Acceptance Circles 
The total output power is calculated from equation (6), and 

hence integration over rectangular mesh opening is required 
which takes the result of integration within an acceptance circle 
(4) as its sampling points. The Gauss quadrature rule is a 
powerful numerical integration method which rapidly 
approaches to the exact integration. It can be applied for 
integration over the mesh opening, but integration over the 
circle is an issue to be considered. It is possible to derive a 
Gauss circular rule via appropriate transformation of the 
integration domain.  

C. Moving Least Squares Approximation for Sampling of 
Electric Potential 
The finite element grid is fixed for calculating electric 

potential field. It is convenient to construct a scattered data 
interpolation for resampling the electric field at arbitrary 
position. For the sake of resampling, the moving least squares 
(MLS) approximation is employed which is widely used for 
mesh-less engineering simulations. Our MLS procedure 
basically follows what briefly explained in literature [6], but 
the following tri-quadratic basis is used as vector   

𝒑𝒑𝑇𝑇 = {1, 𝑥𝑥,𝑦𝑦, 𝑧𝑧, 𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦, 𝑧𝑧𝑧𝑧, 𝑥𝑥2,𝑦𝑦2, 𝑧𝑧2}               (8) 
For the reconstruction of potential field, 48 closest 

neighboring points are selected by a bucket search procedure. 
Since the mesh-like electrode structure is assumed to be 
periodic, its pattern repeats in lateral directions. Therefore, 
sampling point coordinates for MLS approximation should be 
shifted in the multiple of unit cell size when the coordinates are 
beyond of the cell. 

IV. APPLICATION FOR CALCULATING TOTAL OUTPUT 
POWER 

A. Problem Description 
The developed procedure is applied to investigate the total 

output power dependence on unit cell sizes. Figure 2 shows the 
structure of LED. 
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FIGURE II. THE COMPUTATIONAL MODEL OF THE LED. “LATERAL 
VIEW” SHOWS THE LAYER ARRANGEMENT AND THICKNESS OF 

EACH LAYER. FROM THE LOWEST LAYER, IT CONSISTS OF 
BOTTOM, ACTIVE, SEPARATION, AND METAL ELECTRODE LAYERS, 

AND THEN VERY THICK AIR LAYER IS PREPARED TO IMITATE 
NATURAL DECREASING OF POTENTIAL FIELD 

The LED is considered as a perfect periodic structure of 
unit cells, and hence only one unit cell is modeled. The 
boundary conditions are φ = 0V at the top and the bottom 
surfaces, and φ = 2.5V in the strips of metal electrode layer. We 
consider a LED system of total lateral size 36,100 by 36,100 

nano meters with varying unit cell size a = 400, 500, 600, 800, 
900, 1000, and 1200 nano meters (each consists of the number 
of unit cells 90×90, 72×72, 60×60, 45×45, 40×40, 36×36, 
and 30×30). 

All computations are implemented in C++ computer code. 
The sparse linear systems are solved by preconditioned 
conjugate gradient method. The largest problem (a = 1200nm) 
consists of 337,280 nodes (degrees of freedom), which takes 
about 1 minute to solve the equation system, and 25 minutes 
for calculating total output power, on our ordinary personal 
computer. 

B. Results 
We consider three approaches of total output power 

calculations: (a) present procedure, (b) present procedure 
without thick (9000nm) air layer for finite element solution, 
and (c) present procedure with the analytical potential 
introduced in [4].  

The total output power dependence on the mesh pitch a is 
shown in Figure 3. It is not realistic to assign boundary 
condition φ = 0 in the distance of zero, and hence the situation 
(b) with the lowest output power is a reference for comparisons. 
The predicted total output power is always the largest with our 
model (a). Also, our model predicts a clear peak of output 
power depending on the mesh pitch. The peak appears around 
the mesh pitch a = 600 nm. 

 
FIGURE III. NORMALIZED TOTAL OUTPUT OPTICAL POWER VERSUS MESH PITCH. CURVES (A) AND (B) 

CORRESPOND TO SQUARE CROSS SECTIONAL STRIP MODEL. THE DISTANCE BETWEEN TOP SURFACE OF THE 
LED STRUCTURE AND TOP BOUNDARY OF COMPUTATION DOMAIN IS 9000 NM FOR CURVE (A) AND ZERO FOR 

CURVE (B). CURVE (C) CORRESPONDS TO CIRCULAR WIRE APPROXIMATION 

 

Figure 4 shows electric potential distributions on the top 
surface of active layer for unit cell sizes a = 400, 800, and 1200 
nm. The distributions obtained by analytical solution tend to be 
steeper than the finite element solutions, and the surface level 
(average potential value) is smaller. 

Figure 5 shows power density distributions on the mesh 
opening for unit cell sizes a = 400, 800, and 1200 nm. The 

distributions based on the analytical solution is also steeper as 
the potential distributions, and maximum output power density 
is larger. However, with our finite element potential calculation, 
the area in which power density is zero is smaller, which results 
in the predicting higher total output power. 
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FIGURE IV. COMPARISONS OF POTENTIAL DISTRIBUTION AT THE ACTIVE LAYER. THE FIRST ROW SHOWS THE DISTRIBUTIONS OBTAINED 

BY FINITE ELEMENT SOLUTION WITH MLS RESAMPLING, AND THE SECOND ROW SHOWS THOSE OF ANALYTICAL SOLUTION IN [4] 

 

FIGURE V. COMPARISONS OF POWER DENSITY DISTRIBUTION AT THE INTERFACE OF SEPARATION LAYER AND THE TOP METAL 
ELECTRODE LAYER. THE FIRST ROW SHOWS DISTRIBUTIONS USING PRESENT MODEL, AND THE SECOND ROW SHOWS RESULTS USING [4] 

 

V. CONCLUSION 
A computational procedure is developed for modeling an 

LED with mesh like top metal electrodes. The finite element 
method is applied to obtain the potential energy distribution, 
and it is resampled by the moving least squares approximation. 
The resampled potential values are used for integrating over 
acceptance circles to estimate output power density at mesh 
opening of top electrode layer of the LED structure.  

The procedure is applied for estimating total output power 
dependence on the unit cell size of mesh opening. The analysis 
predicts that there is a peak of total output power. 

REFERENCES 
[1] S. Nakamura, ”The roles of structural imperfections in InGaN-based 

blue light-emitting diodes and laser diodes”, Science vol. 281, 1998, 
p.956. 

[2] S. Shapoval, M. Barabanenkov, V. Sirotkin, E. Polushkin, L. Saptsova, 

240



A. Kovalchuk, et al., “High efficiency LED with optoelectronically 
optimized p-contact” Proc. of WOCSDICE 2007, Venice, Italy, 2007, p. 
29. 

[3] A. Konishi, R. Yamase, I. Khmyrova, J. Kholopova, E. Polushkin, A. 
Kovalchuk, V. Sirotkin, and S. Shapoval, ”Analytical model of 
lightemitting diodes with patterned contact ” Opt. Rev. vol. 20, 2013, 
p.214. 

[4] I. Khmyrova, N. Watanabe, J. Kholopova, A. Kovalchuk, and S. 
Shapoval, “Light extraction in planar light-emitting diode with 
nonuniform current injection: model and simulation”, Appl. Opt. vol. 
53,  2014, p.4734. 

[5] M. Fukuda, Optical Semiconductor Devices, New York: Wiley, 1999. 
[6] Y. Nishidate, T. Nagata, S. Morita, and Y. Yamagata, “Ray-tracing 

method for isotropic inhomogeneous refractive-index media from 
arbitrary discrete input,” Appl. Opt. vol. 50, 2011, p.5192. 

 

241


	I. Introduction
	II. Output Power of the LED
	III. Computational Modeling
	A. Finite Element Modeling for Electric Potential Computation
	B. Gauss Circular Rule for Numerical Integration within Acceptance Circles
	C. Moving Least Squares Approximation for Sampling of Electric Potential

	IV. Application for Calculating Total Output Power
	A. Problem Description
	B. Results

	V. Conclusion
	References




