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Abstract—In this paper, we introduce an improved hepatitis B 

virus(HBV) model to discuss the impact of vaccination. The basic 

reproductive number 0R determine the extinction and the 

persistence of virus infection.When 0R is less than one,the disease-

free equilibrium is globally-asymptotically stable and the 

infection becomes extinct eventually;When 0R is greater than 

one,the unique endemic equilibrium exists and endemic 

equilibrium is locally asymptotically.The results indicate that 

vaccination plays an importment role in preventing and 

controlling  the spread of HBV. 
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I. INTRODUCTION 

Recently, mathematical models have been used frequently 
to study the transmission dynamics of HBV in various regions. 
Long et al. (2008) considered   the mathematical model of 
CTL immune response to HBV infection [1].Eikenberry et 
al.(2009)analyzed the hepatitis B virus infection in a delay 
model[2].Li et al.(2011)analyzed the dynamic behaviors of a 
HBV infection model with logistic hepatocyte growth and 
discuss the stability[3].These models provided useful 
information about the impact of various control measures. 

II. MODEL  

A deterministic compartmental model, a system of 
ordinary differential equations, is proposed to describe the 
dynamics of HBV transmission. The HBV transmission is 
complex and the detailed mechanism remains unclear, for the 
sake of simplicity, we make some assumptions: 

(1)We class all the vertical infected infants into the chronic 
carriers. 

(2)We assume that all the newborns are vaccinated at the 
same efficacy, since many countries have introducer HBV 
vaccination into their nation infant immunization program. 

(3)The exposed compartment will shift either to the acute 
infection individuals or to the chronic HBV carriers, according 
to the medical journal by Cao(2010)[4].Attention that in this 
paper the chronic HBV carriers includes the so-called 
medically HBV carriers and the chronic infectious individuals. 

Note that Medley et al. considered only five groups and did 
not distinguish the recovered and vaccinated subgroups[5].In 
fact ,the immunity after recovery is lifetime, while that 
following vaccination might wane after some time. 

We divide the host population into six groups: the 
susceptible individuals S ; infected but not yet infectious 

individuals (exposed) E ; acute infectious individuals I ; 
chronic HBV carriers C ; recovered individuals R ; 

vaccinated individuals V  .Of the six stages, both acute 

infection and chronic HBV carriers can spread the disease. 

(1 )   newborns successfully immunized move directly to 

the immune following vaccination, C babies have 

infected due to vertical transmission and access to chronic 

carrier class, the lest (1 C)  newborns are unimmunized 

and become susceptible individual , q and   is less than 1,all 

the parameters are nonnegative. 

Based on the characteristics of HBV transmission, the 
relevant differential equations are 
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Where,  is the death rate(and equally the birth rate),   is 

the proportion of failure immunization,   is the proportion of 

children born to carrier mothers who have been infected,   is 

the loss of immunity rate,  is the transmission coefficient,   

is the infectiousness of the chronic carriers relative to acute 
infections,   is the rate of exposed individuals becoming 

acute infectious individuals,   is the rate of the exposed 

individuals becoming chronic carriers, q  is the proportion of 

acute infection develops to chronic carriers , 1  is the rate of 

moving from acute class to chronic or recovery class, 2  is the 

vaccination rate, 3  is the rate of moving from chronic carrier 

to recovery.We assume all the newborns are vaccinated within 
24 hours after birth, all the parameters are nonnegative. 
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Because R  appears only in the fifth equation of the 
system(1), we can discuss the following reduced system: 
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the biological sense, 
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is a positive invariant set of  the system(2). 
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III. BASIC REPRODUCTION  NUMBER AND EQUILIBRIUM 
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Using the notation in van den Driessche and Watmough 

(2002) [6], we obtain the basic reproduction number 0R  
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IV. STABILITY OF EQUILIBRIUM 

Theorem 4.1 For the system (2.2)  

(1) If 
0 1R  ,there is no positive equilibrium,and the 

disease-free equilibrium 0P
 
is locally stable.  

(2)If 
0 1R  ,the disease free equilibrium is unstable, the  

endemic equilibrium *P
 
exists, and it is locally stable. 

Proof:The Jacobian matrix at 0P is  
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The characteristic equation at 0P is as follow,  
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Therefore, by Routh-Hurwitz criteria, all roots have 

negative real parts, and 0P is locally stable. 

Next we will discuss the properties of the endemic 

equilibrium *P  ,the  jacobian  matrix at *P is *( )J P  
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We make an elementary row-transformation for *( ),J P  and 

we obtain the following matrix *J . 
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As the abo
v
e, we can obtain that
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4 0M   at the same time, we have 

5 5 0M   . Therefore, all eigenvalues are negative, and we 

have the 
*P is locally asymptotically stable. 

In order to study the global stability of the disease-free 
equilibrium, we apply the novel approach in Kamgang and 
Sallet (2008)[7]. 

Before proving the main theorem we first give a lemma. 

Lemma 4.1 If the following hypothesis H1 − H5 are 
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On the positively invariant set Ω, where 1 2( , )X X X and 
* *

1( ,0)X X denote a disease-free equilibrium(DFE) of the 

system above.The variable 1X denotes the numbers in the 

different compartments of susceptible, immune, recovered 
individuals   ,in other words all the individuals who are not 
infected and who are not transmitting the disease. The 

varibal 2X denotes the number of infected individuals, For 

example, exposed individuals, infectious, carrying individuals 
and so on. 

H1: The system is defined on a positively invariant set 
 of the nonnegative orthant. The system is dissipative on   
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free sub-manifold).  

H5: 2( ) 0A   ,where 
2( ) 0A   is spectral bound of 2A . 

Using the lemma (4.1), we can obtain that DFE is globally 
asymptotically stable ,next, we will prove that. 
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When 0 1R  , we have 1 0, 0d d  .It follows from the 

Routh-Hurwitz criterion that the two eigenvalues have 

negative real part if and only if 
0 1.R  When R0 = 1, one 

eigenvalue is zero and another is negative real part root. Hence, 

M  is a stable Metzler matrix if and only if 
0 1R  , that is 

2( ) 0A  .We have seen that the hypotheses all are satisfied. 

Then by Lemma 4.1, we  get the theorem 4.2. 

Theorem 4.2 For the system (2.2), the disease-free 

equilibrium 0P is globally asymptotically stable if 0 1R  . 

V. CONCLUSIONS 

Hepatitis B is one of the top three infectious diseases 
reported by the Ministry of Health of China. Almost a third of 
the people infected with HBV worldwide in China. In this 
paper, we propose a mathematical model to study the 
transmission dynamics. We discussed the stability of the 
disease-free and disease-endemic equilibrium of the model. By 
analysis, we obtain that vaccine is important to control the 
hepatitis B virus. At last, we proposed a new method to prove 
the globally stability of disease-free equilibrium, the method 
effective for the high dimension ordinary differential equations. 
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