
Optimal Construction of Stroage Clusters for the
Deployment of Cloud Platforms

Cong Xu
Institute for Network Sciences and Cyberspace

Tsinghua University
Beijing, China

Tsinghua National Laboratory for Information Science and Technology (TNList)
Tsinghua University

Beijing, China

Abstract—Improving the deployment efficiency for large-scale
cloud computing platforms is critical for the performance of IaaS
(Infrastructure-as-a-Service) cloud, especially under heavy
workloads and the ever-changing demands of the tenants. Most
of the state-of-the-art automatic deployment mechanisms use a
single NFS server as the image source node and deploy the
application software on the physical clusters based on the
“PXE+NFS”, which will suffers performance bottleneck and
SpoF (Single point of Failure) problem. Some novel deployment
mechanisms have also been proposed based on a storage network
which consists of multiple NFS servers, however, they seldom
consider the impact of storage network topologies on the
performance of deployment processes. This paper focuses on
optimizing the topologies of storage networks to improve the
overall performance of the automatic deployment mechanisms.
We formulate the throughput and deployment latency of a
storage network under a specific topology, and then design a
novel mechanism to optimize the topology of a specific storage
network. Experimental results show that our mechanism improve
the overall deployment latency on a specific physical cluster
dramatically.

Keywords-cloud computing; cluster; storage network; fast
deployment

I. INTRODUCTION
With the rapid development of cloud computing technology

and the immense proliferation of cloud-based services, the
scales of cloud computing platforms are growing gradually,
and deploying cloud system among large-scale physical
clusters efficiently has become a challenge. The traditional
deployment mechanism for IaaS (Infrastructure-as-a-Service)
cloud is to setup system and application software on individual
node of the physical cluster and modify relative configurations
[1, 2]. However, this deployment manner will induce wasteful
duplication of labour and configuration errors. Thus, automatic
deployment mechanisms are needed to counteract the problems
caused by the traditional deployment mechanism.

Currently, the most widely used automatic deployment
mechanisms follow the “PXE+NFS [3]” mode: first deploy an
NFS server to store the system image and a PXE server to load
the OS images from the NFS server; and then set up the OS
software on the destination cluster and finish the deployment of
the IaaS cloud. However, following this deployment mode,

only OS software has been setup, the complex configuration
operations (e.g. configuration of network node and compute
node) is still investable. Moreover, most of the state-of-the-art
deployment mechanisms use only one NFS server as the image
provider, and the performance of the deployment mechanisms
are affected by the performance bottleneck and SpoF (Single
point of Failure) problems of the single NFS server. To address
this problem, some studies propose novel deployment
mechanisms based on storage networks [4, 5, 6], which deploy
multiple NFS servers and construct a storage network to
mitigate the performance bottleneck as well as the SpoF
problem caused by the single NFS server. However, to the best
of knowledge, the existing studies seldom consider the impact
of storage network topology on the performance of automatic
deployment mechanism.

This paper focuses on optimizing the topologies of storage
networks to improve the overall performance of the automatic
deployment mechanisms. We present a performance model that
precisely captures the throughput and deployment latency of a
storage network under a specific topology. Based on the results
of the performance model, we further design a novel
mechanism to optimize the topology of a specific storage
network and improve the deployment latency on a physical
cluster.

II. AUTOMATIC DEPLOYMENT PROCESSES BASED ON
STORAGE NETWORKS

The general architecture of a storage network and the
deployment process are shown in Fig. 1. All the OS images and
software images needed to deploy a cloud platform are stored
in the storage network consists of multiple NFS and PXE
servers. The PXE servers copy the source images from the NFS
servers (Spawning process shown in the figure), and provide
root-disk/rootfs for the compute nodes in a physical cluster.
The management server in the architecture provides
management services to the physical cluster (e.g. PXE service,
DHCP service, TFTP service, denoted as Bootloader and
DHCP in the figure), and meanwhile, the management node is
responsible for building source images and uploading the
images to the storage network.

This deployment mechanism constructs a storage cluster
and enables the diskless deployment mode based on source

International Conference on Modelling, Simulation and Applied Mathematics (MSAM 2015)

© 2015. The authors - Published by Atlantis Press 253

images. All the necessary OS images and configuration files
are uploaded to the storage cluster by the management server.
Each node in the physical clusters is mapped to a node image in
the storage network. Supported by the COW (Copy or Write)

technique, the image delivering process among the storage
clusters is fast, moreover, using a cluster to store the source
images, the performance of the deployment mechanism will
increase linearly as the scale of the cloud platform.

FIGURE I. DEPLOYMENT PROCESS OF IAAS CLOUD PLATFORMS USING STORAGE NETWORK

III. STORAGE NETWORK TOPOLOGY OPTIMIZATION
MECHANISM

In this section, we first propose a model to calculate the
throughput and deployment latency of a specific storage
network. After that we design a novel mechanism to optimize
the topology of the storage network. Some important notations
and definitions used in the model are illustrated in Table 1.

To provide deployment performance guarantee, the overall
throughput of the storage network should exceed the total
read/write demand of all the nodes in the cloud platform. Thus,
we get:

1

cloudN

storage j
j

TP RW
=

> ∑

Suppose the number of image replicas in the storage
network is Nreplica, then the overall throughput of the storage
network can also be formulated as:

1
/ 2 (1)

storageN

storage i replica
i

TP TP N
=

= ∑

The overall deployment process can be divided into 3 sub-
phases: spawning process, PXE booting process and node
image loading process. Therefore, the total deployment latency
Ttotal can be formulated as:

(2)total spawn boot loadT T T T= + +

254

TABLE I. SUMMARY OF KEY NOTATIONS AND DEFINITIONS

Notations Definitions

TPstorage Overall IO throughput of the storage network

Nstorage Number of servers in the storage cluster

TPi IO throughput of the ith server in the storage network

TPavg Average IO throughput of a storage node

SPstorage Overall read/write speed of the storage network

B Average data transmission speed between two servers

S Size of source image

Snode Size of node image

Nreplica Number of source image replica in a storage network

Ncloud Number of servers in the IaaS cloud

RWj
Read/Write performance demand of node j in the IaaS

cloud
Ttotal Total deployment latency

Tspawn Spawning latency of the deployment process

Tboot PXE booting latency of the the deployment process

ti
load Node image loading latency of the ith server in IaaS cloud

In the spawning phase, the total deployment latency is

determined by the image size, replica number, bandwidth, as
well as the IO performance of each storage server. Specifically,
the overall deployment latency of the spawning phase is:

/ { , } (3)spawn replica storage storageT S N Min B N TP= ⋅ ⋅

The expression of Tspawn is determined by which is the
bottleneck performance factor: the data transmission
performance between the storage nodes, or the I/O performance
of each storage node. Substitute (1) into (3), we get more
specific expression of Tspawn:

1

2

1

1

, / 2

(4)2
, / 2

storage

storage

storage

N
replica

storage i
istorage

Nspawn
replica

storage iN
i

i
i

S N
if N TP B

B N
T S N

if N TP B
TP

=

=

=

⎧ ⋅
⎪ ≤

⋅⎪
⎪= ⎨ ⋅
⎪ >
⎪
⎪⎩

∑

∑
∑

In the booting phase, the total deployment latency is
determined by the image size as well as the IO performance of
each storage server. Thus, Tboot can be expressed as:

2

1
2 / (5)

storageN
boot storage

boot boot storage i
istorage

S N
T S N TP

TP =

⋅
= = ⋅ ∑

Finally, the latency of the node image loading process is
determined by the total size of node images and the bandwidth.
Hence, we get:

(6)boot cloud
load

storage

S NT
N B

⋅
=

⋅

For analytic tractability, we assume that the IO performance
of a storage server is much better than the transmission
performance between storage servers. Substitute (4), (5) and (6)
into (2), we get the final expression of Ttotal :

2

1

2
storage

total spawn boot load

replica boot cloud boot storage
N

storage
i

i

T T T T

SN S N S N
BN

TP
=

= + +

+
= +

∑

Our goal is to minimize the overall deployment latency
while maintain the throughput guarantee of the storage system.
Then, the performance optimization model is:

Min
2

1

2
storage

replica boot cloud boot storage
total N

storage
i

i

SN S N S N
T

BN
TP

=

+
= +

∑

 s.t.

1

1

2

/ 2

cloud

storage

N

avg storage j replica
j

N

storage i
i

TP N RW N

N TP B

=

=

⎧
⋅ > ⋅⎪

⎪
⎨
⎪ ≤⎪
⎩

∑

∑

Suppose the physical topology of the storage network
satisfies centralized architecture, then our topology
optimization mechanism is to determine the optimal number of
source image replicas (Nreplica) and the optimal number of PXE
servers (Nstorage).

First, we assume that the number of image replicas is fixed,
and then the optimal number of PXE services can be calculated
by solving the optimization model:

2 2 2
2

2 2

0, 0

() 0

()
2

total total

storage replica

total total total

storage replica storage replica

replica boot cloud avg
storage

T T
N N

T T T
N N N N

SN S N TP
N

SB

∂ ∂⎧ = =⎪∂ ∂⎪
⎨
∂ ∂ ∂⎪ ⋅ − >

⎪∂ ∂ ∂ ∂⎩

+
⇒ =

Then, the optimal number of source image replicas can be
calculated using the following algorithm.

Algorithm 1 Optimal deployment of storage network
1: Input: S Sboot Ncloud, B TPstorage Nstorage
2: Output: Optimal number of image replicas: Nreplica
3: Initialize: Max / 2 /avg boot cloudN TP B S N S← −
4: Initialize: MinT ←∞

for N:= 1 to NMax do
Calculate Ttotal
if Ttotal <TMin then

255

Algorithm 1 Optimal deployment of storage network
 TMin = Ttotal
else break
end for

5: Nreplica:=N-1
6: return Nreplica

Our mechanism optimizes the topology of the storage

network by determining the optimal number of service replicas
and PXE servers in a centralized cluster.

IV. EXPERIMENT
This section constructs a storage network based on our

topology optimization mechanism, and shows some
experimental results to validate our model. Our storage
network is deployed using 25 physical servers with the same
configuration (2 Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz,

64GB Memory, and 1TB disk). Using this storage network,
we try to setup OpenStack cloud software (release Havana) on
a cluster consists of 50 physical servers to build an IaaS cloud.
To validate our mechanism, some other deployment
mechanisms are also used as comparisons.

Fig. 2A and 2B show the average IO throughput of a
storage server and average in/out traffic between storage
servers in the spawning phase respectively. We can see from
the Fig. 2A that the storage servers are in little demand of IO
performance since most of the operations in this phase are to
read/write configuration files. Thus, the throughput guarantee
can be ensured. By comparing the results shown in the two
figures, we find that the bottleneck performance factor is the
transmission performance, which is in accordance with our
previous assumption.

FIGURE II. AVERAGE STORAGE NODE THROUGHPUT AND
NETWORK TRAFFIC IN THE SPAWING PROCESS

After that, we deploy IaaS cloud platform of different scales
(no more than 50 servers) using this storage network. To
validate our mechanism, another two deployment mechanisms
are used as comparisons: one is the automatic deployment
mechanism based on a single NFS server as aforementioned;
the other is Cobbler [7].

 A B

FIGURE III. AVERAGE STORAGE NODE THROUGHPUT AND
NETWORK TRAFFIC IN THE SPAWING PROCESS

First, we evaluate the deployment latency by using the same
storage network (consists of 20 storage nodes) to deploy
different sized IaaS cloud platforms; the experiment results are
shown in Fig. 3A. Next we evaluate the deployment latency by
deploy the same IaaS cloud (consists of 50 servers) using
different sized storage networks; the experiment results are
shown in Fig. 3B. Since our model has calculated the optimal
replica number based on the scale of the storage network
(Nstorage) and the IaaS cloud (Ncloud), it improves the deployment
latency dramatically, especially when the scale of the physical
cluster is large.

V. CONCLUSION
This paper optimizes the topologies of storage networks to

improve the overall performance of the automatic deployment
mechanisms. We present a performance model that precisely
captures the throughput and deployment latency of a storage
network under a specific topology. Based on the results of the
performance model, we further design a novel mechanism to
optimize the number of service replicas and PXE servers in a
centralized storage cluster. Experimental results show that our
mechanism improve the overall deployment latency on a
specific physical cluster dramatically.

REFERENCES
[1] Dong, X., Sun, F., Design and Implementation of Image Based Cluster

Deployment System, Computer Engineering, 31(24), pp. 132–134,
2005.

[2] Wu, W., Liu, A., Cheng Y., Fast Deployment and Dynamical
Configuration of Large-scale Computer Cluster System, Application
Research of Computers, 25(6), pp. 1911-1913, 2008.

[3] Frye, Jr. J. F., Embedded OS PXE server, U.S. Patent No.7085921.1,
2006.

[4] Fiorese, A., Paulo, S., Fernando, B., Assessment of multi-domain
network management through P2P, IEEE ACM Transactions on
networking, 2005.

[5] Gao, C., Yu, H., Shi, G., et al, SMON: Self-Managed Overlay
Networks for Managing Distributed Applications. Proc. of NOMS 2010,
Japan, Apr. 2010.

[6] Wendell, P., Jiang, J. W., Michael. J., DONAR: Decentralized Server
Selection for Cloud Services. Proc. of SIGCOMM 2010, India, 2010.

[7] Cobbler Manual, http://www.cobblerd.org/manuals/2.4.0/. 2013.6.

256

