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Abstract—Improving the deployment efficiency for large-scale 
cloud computing platforms is critical for the performance of IaaS 
(Infrastructure-as-a-Service) cloud, especially under heavy 
workloads and the ever-changing demands of the tenants. Most 
of the state-of-the-art automatic deployment mechanisms use a 
single NFS server as the image source node and deploy the 
application software on the physical clusters based on the 
“PXE+NFS”, which will suffers performance bottleneck and 
SpoF (Single point of Failure) problem. Some novel deployment 
mechanisms have also been proposed based on a storage network 
which consists of multiple NFS servers, however, they seldom 
consider the impact of storage network topologies on the 
performance of deployment processes. This paper focuses on 
optimizing the topologies of storage networks to improve the 
overall performance of the automatic deployment mechanisms. 
We formulate the throughput and deployment latency of a 
storage network under a specific topology, and then design a 
novel mechanism to optimize the topology of a specific storage 
network. Experimental results show that our mechanism improve 
the overall deployment latency on a specific physical cluster 
dramatically. 
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I.  INTRODUCTION  
With the rapid development of cloud computing technology 

and the immense proliferation of cloud-based services, the 
scales of cloud computing platforms are growing gradually, 
and deploying cloud system among large-scale physical 
clusters efficiently has become a challenge. The traditional 
deployment mechanism for IaaS (Infrastructure-as-a-Service) 
cloud is to setup system and application software on individual 
node of the physical cluster and modify relative configurations 
[1, 2]. However, this deployment manner will induce wasteful 
duplication of labour and configuration errors. Thus, automatic 
deployment mechanisms are needed to counteract the problems 
caused by the traditional deployment mechanism. 

Currently, the most widely used automatic deployment 
mechanisms follow the “PXE+NFS [3]” mode: first deploy an 
NFS server to store the system image and a PXE server to load 
the OS images from the NFS server; and then set up the OS 
software on the destination cluster and finish the deployment of 
the IaaS cloud. However, following this deployment mode, 

only OS software has been setup, the complex configuration 
operations (e.g. configuration of network node and compute 
node) is still investable. Moreover, most of the state-of-the-art 
deployment mechanisms use only one NFS server as the image 
provider, and the performance of the deployment mechanisms 
are affected by the performance bottleneck and SpoF (Single 
point of Failure) problems of the single NFS server. To address 
this problem, some studies propose novel deployment 
mechanisms based on storage networks [4, 5, 6], which deploy 
multiple NFS servers and construct a storage network to 
mitigate the performance bottleneck as well as the SpoF 
problem caused by the single NFS server. However, to the best 
of knowledge, the existing studies seldom consider the impact 
of storage network topology on the performance of automatic 
deployment mechanism. 

This paper focuses on optimizing the topologies of storage 
networks to improve the overall performance of the automatic 
deployment mechanisms. We present a performance model that 
precisely captures the throughput and deployment latency of a 
storage network under a specific topology. Based on the results 
of the performance model, we further design a novel 
mechanism to optimize the topology of a specific storage 
network and improve the deployment latency on a physical 
cluster. 

II. AUTOMATIC DEPLOYMENT PROCESSES BASED ON 
STORAGE NETWORKS 

The general architecture of a storage network and the 
deployment process are shown in Fig. 1. All the OS images and 
software images needed to deploy a cloud platform are stored 
in the storage network consists of multiple NFS and PXE 
servers. The PXE servers copy the source images from the NFS 
servers (Spawning process shown in the figure), and provide 
root-disk/rootfs for the compute nodes in a physical cluster. 
The management server in the architecture provides 
management services to the physical cluster (e.g. PXE service, 
DHCP service, TFTP service, denoted as Bootloader and 
DHCP in the figure), and meanwhile, the management node is 
responsible for building source images and uploading the 
images to the storage network.  

This deployment mechanism constructs a storage cluster 
and enables the diskless deployment mode based on source 
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images. All the necessary OS images and configuration files 
are uploaded to the storage cluster by the management server. 
Each node in the physical clusters is mapped to a node image in 
the storage network. Supported by the COW (Copy or Write) 

technique, the image delivering process among the storage 
clusters is fast, moreover, using a cluster to store the source 
images, the performance of the deployment mechanism will 
increase linearly as the scale of the cloud platform. 

FIGURE I.  DEPLOYMENT PROCESS OF IAAS CLOUD PLATFORMS USING STORAGE NETWORK 

III. STORAGE NETWORK TOPOLOGY OPTIMIZATION 
MECHANISM 

In this section, we first propose a model to calculate the 
throughput and deployment latency of a specific storage 
network. After that we design a novel mechanism to optimize 
the topology of the storage network. Some important notations 
and definitions used in the model are illustrated in Table 1. 

To provide deployment performance guarantee, the overall 
throughput of the storage network should exceed the total 
read/write demand of all the nodes in the cloud platform. Thus, 
we get: 

1

cloudN

storage j
j

TP RW
=

> ∑  

Suppose the number of image replicas in the storage 
network is Nreplica, then the overall throughput of the storage 
network can also be formulated as: 

1
/ 2 (1)

storageN
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The overall deployment process can be divided into 3 sub-
phases: spawning process, PXE booting process and node 
image loading process. Therefore, the total deployment latency 
Ttotal can be formulated as: 

(2)total spawn boot loadT T T T= + +  
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TABLE I.  SUMMARY OF KEY NOTATIONS AND DEFINITIONS 

Notations Definitions 

TPstorage Overall IO throughput of the storage network 

Nstorage Number of servers in the storage cluster 

TPi IO throughput of the ith server in the storage network 

TPavg Average IO throughput of a storage node 

SPstorage Overall read/write speed of the storage network 

B Average data transmission speed between two servers 

S Size of source image 

Snode Size of node image 

Nreplica Number of source image replica in a storage network 

Ncloud Number of servers in the IaaS cloud 

RWj 
Read/Write performance demand of node j in the IaaS 

cloud 
Ttotal Total deployment latency 

Tspawn Spawning latency of the deployment process 

Tboot PXE booting latency of the the deployment process 

ti
load Node image loading latency of the ith server in IaaS cloud 

 
In the spawning phase, the total deployment latency is 

determined by the image size, replica number, bandwidth, as 
well as the IO performance of each storage server. Specifically, 
the overall deployment latency of the spawning phase is: 

/ { , } (3)spawn replica storage storageT S N Min B N TP= ⋅ ⋅  

The expression of Tspawn is determined by which is the 
bottleneck performance factor: the data transmission 
performance between the storage nodes, or the I/O performance 
of each storage node. Substitute (1) into (3), we get more 
specific expression of Tspawn: 
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In the booting phase, the total deployment latency is 
determined by the image size as well as the IO performance of 
each storage server. Thus, Tboot can be expressed as: 
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Finally, the latency of the node image loading process is 
determined by the total size of node images and the bandwidth. 
Hence, we get: 

(6)boot cloud
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For analytic tractability, we assume that the IO performance 
of a storage server is much better than the transmission 
performance between storage servers. Substitute (4), (5) and (6) 
into (2), we get the final expression of Ttotal : 
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Our goal is to minimize the overall deployment latency 
while maintain the throughput guarantee of the storage system. 
Then, the performance optimization model is: 
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Suppose the physical topology of the storage network 
satisfies centralized architecture, then our topology 
optimization mechanism is to determine the optimal number of 
source image replicas (Nreplica) and the optimal number of PXE 
servers (Nstorage). 

First, we assume that the number of image replicas is fixed, 
and then the optimal number of PXE services can be calculated 
by solving the optimization model: 
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Then, the optimal number of source image replicas can be 
calculated using the following algorithm. 

Algorithm 1  Optimal deployment of storage network 
1: Input: S  Sboot   Ncloud,  B  TPstorage  Nstorage 
2: Output: Optimal number of image replicas: Nreplica 
3: Initialize: Max / 2 /avg boot cloudN TP B S N S← −   
4: Initialize: MinT ←∞  

for N:= 1 to NMax do 
Calculate Ttotal 
if Ttotal <TMin then 
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Algorithm 1  Optimal deployment of storage network 
                TMin = Ttotal 
else   break 
end for 

5: Nreplica:=N-1 
6: return  Nreplica 

 
Our mechanism optimizes the topology of the storage 

network by determining the optimal number of service replicas 
and PXE servers in a centralized cluster. 

IV. EXPERIMENT 
This section constructs a storage network based on our 

topology optimization mechanism, and shows some 
experimental results to validate our model. Our storage 
network is deployed using 25 physical servers with the same 
configuration (2 Intel(R) Xeon(R) CPU E5-2680 @ 2.70GHz,  

64GB Memory, and 1TB disk). Using this storage network, 
we try to setup OpenStack cloud software (release Havana) on 
a cluster consists of 50 physical servers to build an IaaS cloud. 
To validate our mechanism, some other deployment 
mechanisms are also used as comparisons. 

Fig. 2A and 2B show the average IO throughput of a 
storage server and average in/out traffic between storage 
servers in the spawning phase respectively. We can see from 
the Fig. 2A that the storage servers are in little demand of IO 
performance since most of the operations in this phase are to 
read/write configuration files. Thus, the throughput guarantee 
can be ensured. By comparing the results shown in the two 
figures, we find that the bottleneck performance factor is the 
transmission performance, which is in accordance with our 
previous assumption. 

 

FIGURE II.  AVERAGE STORAGE NODE THROUGHPUT AND 
NETWORK TRAFFIC IN THE SPAWING PROCESS  

After that, we deploy IaaS cloud platform of different scales 
(no more than 50 servers) using this storage network. To 
validate our mechanism, another two deployment mechanisms 
are used as comparisons: one is the automatic deployment 
mechanism based on a single NFS server as aforementioned; 
the other is Cobbler [7]. 

 
  A                                               B 

FIGURE III.  AVERAGE STORAGE NODE THROUGHPUT AND 
NETWORK TRAFFIC IN THE SPAWING PROCESS  

First, we evaluate the deployment latency by using the same 
storage network (consists of 20 storage nodes) to deploy 
different sized IaaS cloud platforms; the experiment results are 
shown in Fig. 3A. Next we evaluate the deployment latency by 
deploy the same IaaS cloud (consists of 50 servers) using 
different sized storage networks; the experiment results are 
shown in Fig. 3B. Since our model has calculated the optimal 
replica number based on the scale of the storage network 
(Nstorage) and the IaaS cloud (Ncloud), it improves the deployment 
latency dramatically, especially when the scale of the physical 
cluster is large. 

V. CONCLUSION 
This paper optimizes the topologies of storage networks to 

improve the overall performance of the automatic deployment 
mechanisms. We present a performance model that precisely 
captures the throughput and deployment latency of a storage 
network under a specific topology. Based on the results of the 
performance model, we further design a novel mechanism to 
optimize the number of service replicas and PXE servers in a 
centralized storage cluster. Experimental results show that our 
mechanism improve the overall deployment latency on a 
specific physical cluster dramatically. 
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