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Abstract—The paper gives arguments for the topicality of 
electromagnetic compatibility modeling. Trends of 
electromagnetic simulation software development are stated. 
General simulation process based on method of moments is 
described. On examples of interconnects the improvement of 
simulation is shown, obtained by means of decrease of 
computational costs on segmentation and solution of linear 
algebraic systems. Time response calculation is described and 
results of waveform animation are presented. Recently designed 
testing tools are briefly described.  
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I. INTRODUCTION
1 

Electronics is widely used in all areas of the infrastructure 
of modern society. Increase of electronics working in confined 
space, leads to the increase of its density. The steady increase 
in efficiency of electronics is ensured mostly by the growth of 
the upper frequency of its signal frequency band. Now, these 
trends more frequently lead to malfunctions of electronics due 
to electromagnetic interference, thus, it is necessary to ensure 
electromagnetic compatibility (EMC). For this aim lengthy and 
expensive tests are conducted. Elimination of defects breaks 
the working process and leads to additional costs. Costs and 
delays that would be necessary in the case of ignoring the EMC 
issues can be minimized by means of early and regular 
accounting of the EMC in the product design. Particularly, 
signal and power integrity problem due to distortions of a 
signal propagating along electrical intecconnects is one of the 
important EMC problems [1]. Therefore, it is necessary to 
solve this problem at the stage of electronics design; it can be 
done through simulation via specialized software. In recent 
years there are two trends in the development of such software.  

The first trend consists in expanding the functionality of the 
software by improving primary (that historically appeared first, 
and on the basis of which the software was created) numerical 
method, the integration of other numerical methods and their 
hybrids, as well as integration of the segmentation, methods of 
linear systems solving, and import tools. This approach allows 
expanding the capabilities of the software mostly by enhancing 
its versatility. If the main method is not suitable for the desired 
type of analysis, a user can always use another method or 
hybrid. For example, there are such software as FEKO and 
EMC Studio. Initially they used the method of moments, and 

now allow the use of finite element and/or finite differences 
method.  

The second trend is the takeover of some software by the 
others. If we speak about expanding of the functionality, this 
approach has a lot in common with the first one, but it is more 
versatile. For example, the CST company has taken over the 
Flomerics company, which has been developing products for 
the electromagnetic simulation, such as MicroStripes and 
FLO/EMC. After this takeover, CST expanded its variety of 
computing modules by means of well-established 
developments of Flomerics, based on the method of 
transmission line matrix. We saw the similar situation when 
ANSYS has taken over ANSOFT. Besides, nowadays 
companies are working toward improvement of the user 
interface, implementation of computing using graphics 
processors, and adding of new modules (for example, CST 
EMC Studio). 

Now the Finite Difference Time Domain method and 
Method of Moments (MoM) are most often used to solve 
electromagnetic problems. Various software is developed for 
this aim, proposing new features for designers. However, 
complexity of electronics dictates new software to be 
developed. This paper considers use of MoM in TALGAT 
software on example of interconnects simulation. 

II. BRIVE OVERVIEW OF TALGAT SOFTWARE 

Clients of TALGAT software are the interface modules. 
The core of the software is TLCORE. Computational modules: 
MOM2D – capacitance matrix computation for two-
dimensional structures; MOM3D – capacitance matrix 
computation for three-dimensional structures; RESPONSE –
quasi-static analysis of multiconductor transmission lines 
response; MOMW – electromagnetic analysis of wire 
structures. Optimization modules: ES – evolution strategy; 
GA – genetic algorithms. Utility modules – assistant modules 
(matrix processes, operations with diagrams etc.). An 
interpreted script language TALGAT_Script, using postfix 
notation of expressions, provides "dialogue" with the software. 

III. METHOD OF MOMENTS FOR CAPACITANCE MATRIX 

COMPUTATION 

Effectiveness of MoM application to obtain results of 
desirable accuracy is defined, finally, by computational costs. 
Not considering the synthesis problem, in analysis problem for 
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one set of parameters, we have MoM solution consisting of the 
following steps: derivation of integral equations for a 
considered structure from Maxwell equations; discretization of 
structure (segmentation on N subdomains, in each of which the 
sought-for function is approximated by basis functions); 
calculation of entries of square matrix of order N for linear 
algebraic system; calculation of entries of excitation vector v of 
size N; solution of the linear algebraic system; calculation of 
desirable characteristics (for example, capacitance matrix) from 
the solution. 

Order of discretization is the following [2]. First we are 
segmenting the conductor-dielectric boundaries (subdividing 
them into intervals further called subintervals) and assign 
numbers from 1 to NC to these subintervals. (The infinite 
ground plane is not segmented. If there is a second infinite 
plane, it is bounded at a point far removed from the conductors, 
segmented as a conventional conductor, and considered to be at 
zero potential. If there are other conductors that are always at 
zero potential, they all are conventionally segmented.) Then we 
are segmenting the dielectric-dielectric boundaries and assign 
to obtained ND subintervals numbers from NC+1 to N, so that 
N=NC+ND.  

For clarity, consider the calculation for two-dimensional 
problem (formulas for three-dimensional problem [3] are 
similar). Used notations are n – the permittivity of the nth 

conductor-dielectric subinterval; 
n  и 

n – (further used only 
with m index) the permittivities on the positive (to which the 
vector nn is pointed) and negative sides (from which the vector 
nn is emanated) of the nth dielectric-dielectric subinterval, 
where nn is vector with unit length, pointing out orthogonally 
from center of nth subinterval. Generally, nr  vector is 

according to center of nth subinterval. Particularly, nr   vector 

is according to subinterval of integration, while the nr̂   vector 

is according to the image of the subinterval relatively to infinite 
ground plane. For the matrix S rows with numbers m=1, …, Nс, 
according to conductor-dielectric subintervals we have for smn 
entries 
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For the matrix rows with numbers m=(Nc + 1), …, N, 
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As a result, we obtain the matrix S of structure shown in 
Figure I. 

 

FIGURE I.  STRUCTURE OF MATRIX S  

Thus, the problem of capacitive matrix calculation for 
arbitrary system of conductors and dielectrics is reduced to 
linear algebraic equation S=v, with square and dense matrix 
of order N, relating charge densities (composing vector ) on 
discretization subdomains of boundaries of conductors and 
dielectrics, with assigned potentials of these subdomains 
(composing vector v). This equation is solved NCOND times 
(NCOND is number of conductors without the reference), where 
for ith solution, the ith conductor potential vi, i=1, …, NCOND, is 
1 V, while all other entries of vector v are 0 V. 

IV. SEGMENTATION OF BOUNDARIES 

One of effective ways to decrease computational costs is 
proper segmentation. It makes sense to start with the rough 
segmentation, as following computation requires minimal costs, 
and rather acceptable results can be obtained even with the 
rough segmentation. The need for more accurate results 
naturally leads to the iterative improvement of segmentation, 
i.e. the repeat of calculations with improved segmentation until 
solutions with a given accuracy is obtained. It is natural to use 
the results of the previous iteration, for example, the calculated 
charge densities at the boundaries – for the nonhomogeneous 
segmentation (more frequent in places with a big changes in the 
density). For this purpose, the software provides an adaptive 
iterative choice of the optimal segmentation (AICOS) for 
boundaries of conductors and dielectrics, it allows to obtain the 
desired response with controlled accuracy, and saves time and 
memory [4]. Simple version of AICOS has the following steps: 

AICOS algorithm 
1 Assign parameters of structure and accuracy of calculation (tol). 
2 Set i=0 and the segment length equal to width of conductor w. 
3 Calculate value (Ki) of characteristic under investigation. 
4 Set i=i+1 and the half the segment length. 
5 Calculate value (Ki) of characteristic under investigation. 
6 If (Ki – Ki–1)/Ki–1 > tol, go to step 4. 
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To demonstrate the AICOS effectiveness the computational 
experiment has been conducted for two-dimensional structure 
of cross section shown in Figure II. All sizes are taken from 
real printed circuit board: conductor width w = 890 m; 
separations s1 = 500 m, s2 = 1890 m; thickness of all 
conductors t = 35 m, thickness of prepreg layers h1 = h3 = 
144 m, substrate thickness h2 = 220 m. Thickness of solder 
mask hM = 30 m. Width of side grounded conductors is 5w. 
To decrease random uncertainty the time of 100 computations 
was measured.  

FIGURE II.  FRAGMENT OF CROSS SECTION OF CONSIDERED 
STRUCTURE 

For each iteration number (i) and length of segment (li) the 
order (Ni) of solved linear algebraic system, the time of 
calculation (Ti), the value of calculated capacitance per unit of 
length (Ci), are given in Table I. The number of required 
iterations for tol = 0.01 is 4. For equidistant segmentation of 
10 m, defined by user (taken from condition of subdividing an 
edge of conductor by 3 segments) the computational time is 
1798.02 s, N = 7135, C = 129.7 pF/m. The total time of 
iterations (the sum of Ti in rows 1–4 of Table I) is 13.47 s, that 
is by 133 times less than time for the user defined segmentation. 

TABLE I.  RESULS OF COMPUTATIONAL EXPERIMENT FOR C, C0 AND Z 

i li, µm 
Ni  

for C 
Ti, s  

for C 
Ci, 

pF/m 
Ni 

for C0
Ti, s  

for C0 
C0i, 

pF/m 
Ti, s
for Z Zi, 

1 890 105 0.47 121.4 76 0.46 38.09 1.054 48.78

2 445 182 0.96 124.4 138 0.93 39.12 2.286 47.66

3 222.5 340 2.70 125.7 262 2.50 39.62 6.302 47.15

4 111.25 659 9.34 125.8 510 8.19 39.85 21.962 46.94

Similar results for capacitance per unit of length, calculated 
without dielectrics (C0i), are also given in Table I. For similar 
user defined segmentation the computational time is 1309.12 s, 
N = 5560, C0 = 40.11 pF/m. The total time is 12.08 s that is by 
108 times less than time for the user defined segmentation. 

At last, similar results for wave impedance (Zi) are also 
given in Table I. For similar user defined segmentation the 
computational time is 3127.25 s, while the total time is 
30,604 s that is by 142 times less. 

Thus, use of AICOS, even of simple algorithm option, can 
reduce considerably and automatically (without a user) the 
computational costs for calculation of transmission line 
parameters. Therefore, usage and further improvement of 
AICOS are perspective. 

V. TAKING ACCOUNT OF FREQUENCY DEPENDENCE OF 

MATERIAL PERMITTIVITY 

To demonstrate importance of taking account of frequency 
dependence of material permittivity we consider again the 
simple structure of coupled microstrip line. (Case of two 
conductors permits to estimate effect of considered factors on 
even and odd modes of the line signal separately.) For 
dielectric layer we take commonly used FR-4, which 
permittivity dependence on frequency εr(ƒ) is well known [5] 
and implemented in TALGAT. When simulating with εr and 
tgδ being independent on frequency their values for 1 GHz are 
taken. As excitation the trapezoidal pulse with rise and fall 
times of 100 ps and flat top time of 10 ps is considered. Length 
of the line is 1 m. To mitigate reflections all ends of the line are 
terminated by resistance of geometric average of even and odd 
mode impedances. Four options are simulated (Figure III): εr 
does not depend on frequency (εr= 4.54), lossless dielectric 
(tgδ= 0); εr depends on frequency, tgδ = 0; εr does not depend 
on frequency (εr= 4.54), but dielectric losses are taken into 
account as frequency independent (tgδ = 0.0153); 4) εr and tgδ 
depend on frequency. 

FIGURE III.   WAVEFORMS AT EXCITED CONDUCTOR END OF 
COUPLED MICROSTRIP LINE FOR 4 OPTIONS 

Option 1 shows that input pulse is decomposed on two 
pulses (of even and odd modes) of close magnitudes. In 
option 2 the noncausality appeared in form of negative 
undershoots before arrival of main part of both pulses. Option 3 
shows that magnitudes of first and second pulses are reduced 
considerably due to losses of energy in dielectric. Previous 
noncausality of option 2 disappeared, but early and slow rise of 
pulses is observed that is also noncausal. Note also that the 
noncausal rise of second pulse increased fall time of first pulse. 
At last, option 4 shows most real response. Thus, simulation 
with complete taking account of frequency dependence of 
complex permittivity permits to obtain more correct results, 
than the simulation without such accounting. 

However, comparison of options 3, 4 shows that changing 
the values of εr and tgδ in option 3 we can obtain maximum 
coincidence of waveforms of options 3, 4. The obtained values 
can give acceptable accuracy of simulation in a range of 
parameters or during optimization. Thus, it is possible to use 
option 3 with single calculation of capacitive matrix and to 
avoid use of option 4 that is time-consuming due to need of 
multiple calculation of capacitive matrix for each frequency 
point of signal spectrum. Additional observation shows that 
despite of change of even and odd mode delays their difference 
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is not changed. This fact again permits to use option 3 instead 
of option 4, at least for preliminary simulation. 

VI. MULTIPLE COMPMUTING OF THE CAPACITANCE MATRIX 

To calculate the capacitive matrix (C) of a structure 
consisting of conductors and dielectrics, it is necessary to solve 
a linear system of S=v with a square and dense matrix S of 
order N. The number of subdomains on the boundaries of 
conductor-dielectric (NC) and a dielectric-dielectric (ND) form 
the order of a matrix, and the elements of the matrix are 
calculated from the parameters of these subdomains. Vector v 
consists of the assigned potentials of these subdomains, and the 
desired vector  gives the distribution of the charge density on 
them. In practice, to obtain accurate and causal results we 
should take into account the frequency dependence of relative 
dielectric permittivity r of dielectrics. Then linear systems 
solution is performed for each frequency point of the band, 
which increases the total computational time, proportionally to 
the number of frequency points. However, when r is changed 
(if other parameters of the original structure are constant), we 
can see changes only in elements with the index greater than NC, 
situated on the main diagonal of the linear system matrix, 
corresponding to dielectric-dielectric subdomains. This 
resource was implemented in the software to reduce the total 
computational time [6]. 

The original algorithm for computing M capacitance 
matrices C in TALGAT software as follows. 

Algorithm 1  
1 Set C=0 
2 For k from 1 to M 
3  Compute the entries of the matrix Sk 
4  Perform the LU factorization of the matrix Sk 
5  For i from 1 to NCOND 
6   Compute the elements of the excitation vector vi 
7   Find the solution vector ik from the equation Skik=vi 
8   Compute the entries of the ith column of the matrix C based on ik 
9  Set i=i+1 
10 Set k=k+1 

In order to evaluate the arithmetic complexity of solving a 
linear system by the improved algorithm for computing the 
capacitance matrix [6], consider this algorithm in more details. 

Given a certain εr, represent the corresponding coefficient 
matrix S and the related matrices L and U in block form as 
follows: 

,,































 



BCAD0

BAA
U

IC

0I
L

DC

BA
S

1

1



where I is the identity matrix. This block representation differs 
from the conventional one but provides for the maximum 
acceleration when implemented. As εr changes, only the 
diagonal entries of the block D vary. Represent the block D as 
the sum of a matrix D with zero diagonal and a diagonal matrix 
Diag, which contains the diagonal entries of D, and take into 
account that we need to invert the matrix A, then: 
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From the above Algorithm 1 it is seen that formally the 
inner loop over i can be avoided if the vectors σi and vi (i=1, 
2, ..., NCOND) are replaced by the corresponding N×NCOND 
matrices ∑ and V , and by using an auxiliary N×NCOND matrix 
X (these matrices are represented in block form; the blocks ∑0, 
V0, and X0 are NC×NCOND matrices, whereas the blocks ∑1, V1, 
and X1 are ND×NCOND matrices). Now the improved algorithm 
for computing the capacitance matrix can be described as 
follows. 

Algorithm 2 
1 Set C=0 
2 For k from 1 to M 
3 If k=1 
4 then compute the entries of the matrix S1, and write the diagonal 

entries of the block D to the matrix Diag1 
5 A1 = A1

–1 
6 B1 = A1B1 
7 D1 = D – C1B1 
8 Compute the entries of the excitation matrix V 
9 X0 = AkV0 (X0 and V0 are NC×NCOND matrices) 
10 X1 = V1 – CkX0 (X1 and V1 are ND×NCOND matrices) 
11 Else 
12 Sk = S1 
13 Dk = Dk + Diagk 
14 σ1k = Dk

–1X1 
15 σ0k = X0 – Bkσ1k 
16 Compute the entries of the capacitance matrix C 
17 Compute the entries of the matrix Diagk+1 
18 Set k=k+1 

Table II presents the expressions from Algorithm 2 that are 
used in solving linear systems and their complexities (without 
taking into account writing matrices and vectors to the 
memory), which are computed by the above formulas (with 
account for the relation N=NC+ND). 

TABLE II.  ARITHMETIC COMPLEXITY OF SOLVING A LINEAR SYSTEM BY 
ALGORITHM 2 

Number 
of step

Expression Arithmetic complexity (Q) 
Number of 

computations
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The ultimate analytic expression for the acceleration of 
solving M linear algebraic systems is the ratio (βQ) of the 
number of operations of Algorithm 1 to the number of 
operations of Algorithm 2: 
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is the number of operations of Algorithm 1; 
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is the number of operations for computing the matrix 
decomposition and the auxiliary matrices when computing the 
matrix C for the first time; 
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is the number of operations for solving linear systems starting 
from the second one. 

Numerical values of the acceleration for N=1000 computed 
for NC=900 and M=1, 100, 500, 1000, are presented in Table III. 

TABLE III.  ACCELERATION PROVIDED BY THE IMPROVED ALGORIHM IN THE 
CASE OF COMPUTING M CAPACITANCE MATRICES FOR N=1000, NC=900 

NCOND 
M 

1 100 500 1000 

1 0.31 27.73 94.1 134.27 

10 0.32 26.33 76.80 101.0 

Obviously, if the analysis is required when changing the 
geometrical parameters of the structure, the matrix entries will 
vary in arbitrary places, and therefore the above-mentioned 
approach is not applicable. To overcome this problem a use of 
iterative methods was proposed. 

The algorithm for multiple iterative solution of the linear 
system with partially changing matrix was presented in [7]. In 
this algorithm, the preconditioner matrix M is formed from the 
first linear system. Further, this matrix (without recalculation) 
is used for solving the following linear systems, thereby 
reducing the total solution time with acceptable accuracy. 

Finally, it was supposed that a similar algorithm can be applied 
when changing the sizes of the structure being analyzed. As a 
first step in this direction the reduction of the residual norm 
was investigated for solving the 10 linear systems, obtained by 
small changes for several parameters of a structure [8]. 
Example of these calculations for dielectric height (h) of 
microstrip line is presented in Figure IV. 

FIGURE IV.  DEPENDENCE OF RELATIVE RESIDUAL NORM ON THE 
NUMBER OF ITERATIONS FOR H=250, 300, ..., 700 µM WITH CROSS 

SECTION OF CONSIDERED STRUCTURE 

It was shown that the use of compressed sparse row format 
(CSR) for storing a preconditioner matrix is effective to reduce 
the computational cost. Acceleration of iterative solution of 
linear systems with dense matrices using sparse matrix storage 
formats has been considered in details [9]. Formulas for 
comparing the sparse matrix storage formats have been derived. 
An iterative algorithm for solving linear algebraic systems 
using sparse row format for storing prefiltered preconditioners 
has been designed. A modification of the sparse row format 
leading to 1.14–1.23-times speed-up for matrices of order 1000 
has been suggested. It has been demonstrated that as opposed 
to the usual storage format, the sparse row format provides for 
1.5–1.6-times speed-up in solving the linear systems of orders 
4800, 6000, and 8000. The use of the obtained results allows 
one to reduce both memory and time requirements in solving 
large-scale problems with dense matrices.  

Then, improvements to the ILU(0) factorization algorithm 
for preconditioning linear algebraic systems with dense 
matrices have been suggested [10]. (The preconditioner is 
stored in compressed sparse row format.) On the example of 
the problem of computing the electrical capacity of two stripes, 
it has been demonstrated that the modifications proposed 
provide for a significant reduction of the time for computing 
the ILU(0) preconditioner (up to 4 times) and for solving the 
preconditioned linear system (up to 2.5 times). On real PCB 
structure problems, a new investigation has been performed in 
order to reveal the optimal value of the main parameter (drop 
tolerance) of the iterative solution of linear systems. The 
algorithm for calculation of capacitance matrices has been 
improved for case of multiple calculations. The improved 
algorithm works up to 4 times faster than the initial one.  
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The possibility of multiple iterative solution of linear 
systems was further investigated for computing the capacity of 
microstrip line in the wide ranges of its sizes. To accelerate the 
iterative process two ways were considered. The first one is a 
use of a previous linear system solution (vector xi–1) as an 
initial guess for a following solution (vector x0

i), i.e. x0
i=xi–1 

(for the first system a unit vector are used). The second one is 
the use of preconditioning matrix M, obtained by solving the 
first linear algebraic equation, i.e. Мi=М0. In computational 
experiments four variants were used: in variant 1 acceleration 
was not used. In variants 2 and 3, these ways were used 
separately, and in variant 4 these ways were used together. 

The previous structure (Figure IV) was investigated. The 
aim of the experiment was to evaluate the time expenses 
required for the calculation of 100 capacitive matrices obtained 
by changing one of the dimensions of the structure: dielectric 
height h (in the range of 12–112 m or 933%); conductor width 
w (in the range 18–118 m, or 656%); conductor height t (in 
the range of 6–106 m, or 1767%). The number of segments on 
each boundary of structure has not changed, which allows for 
constant order N=1600 of the linear system matrices for correct 
comparison. As iterative method the BiCGStab method was 
chosen. Iterations were continued until the relative norm of the 
residual vector was more than 10-8. Gaussian elimination was 
used for comparison. Ratios of the total (for 100 linear systems) 
solution times by Gauss elimination and by iterative method 
are shown in Table IV for all variants. Calculations have 
demonstrated the effectiveness of the proposed acceleration 
ways. The number of iterations when using the variant 4 is 
minimal, that reduces the total time of 100 linear systems 
solution by factor about 5–12 and proves the effectiveness of 
the combined usage of acceleration ways. 

TABLE IV.  ACCELERATION OF SOLVING 100 LINEAR SYSTEMS 

Varied parameter Variant 1 Variant 2 Variant 3 Variant 4

h 0.48 1.32 6.49 11.77 

w 0.31 1.15 5.87 10.98 

t 0.37 1.28 2.87 4.92 

In the cases where h and w are changed, the number of 
iterations is less than in the case where t changes. This effect 
can be explained by considerably larger changes in the matrix 
entries. In order to evaluate these changes, the ratios of the 
matrix norms || Δ Ai||1/|| Δ A1||1 and || Δ Ai||∞/|| Δ A1||∞ as 
functions of the number of linear systems being solved were 
computed. The corresponding results, presented in Figure V, 
show that the changes in the matrix norms resulting from 
changing t are greater than those resulting from changing h and 
w. 

Efficiency of the method considered decreases as the 
difference between the initial and current matrices grows. This 
results in that the required number of iterations increases, and 
the iterative solution slows down. In order to alleviate this 
inefficiency, it has been suggested to recompute the 
preconditioner M whenever the rate of convergence in solving 
the current linear system is too slow. 

We suggest to change the preconditioning matrix if the 
current iteration number Nit exceeds a prescribed threshold 
value .N MAX

it  The corresponding algorithm for solving M 
linear algebraic systems, in which the matrix M is changed 
when N MAX

it  is exceeded, can be written (Algorithm 3).  

 

FIGURE V.  RATIOS OF THE MATRIX NORMS AS FUNCTIONS OF 
THE NUMBER OF LINEAR ALGEBRAIC SYSTEMS FOR VARYING H, 

W, AND T 

Algorithm 3 
1 Compute M as the ILU(0) factorization of A1 
2 Nit = 0 
3 For i = 1, . . ., M 
4 if Nit > N MAX

it  and i > 1, then 

5 compute M as the ILU(0) factorization of Ai 
6 Find xi by solving MAixi = Mb with a prescribed accuracy 
7 i = i + 1 

In the above algorithm, the classical ILU(0) factorization is 
used, and no prefiltering is carried out because, for a large 
number of linear systems, this algorithm is efficient only if the 
zero drop tolerance value is used [10]. The initial 
preconditioner M is computed at Step 1. If the current iteration 
number exceeds N MAX

it , then the matrix M is recomputed (Step 
5) and used in solving the subsequent linear systems. Consider 
the influence of the threshold parameter N MAX

it on the solution 
process. If it is too small, then the preconditioner will be 
recomputed too many times, which will result in an 
unacceptable solution time. In the case where N MAX

it is too 
large, the preconditioner will be recomputed not many times 
but the total costs will be large because too many iterations will 
be performed for solving poorly preconditioned systems. These 
arguments suggest that one should look for an optimal value of 
the threshold parameter, for which the total solution time will 
be minimized. This problem was investigated numerically. In 
Table V, detailed data characterizing the solution of 100 linear 
systems for different values of N MAX

it  are provided. 

Considering the data presented in Table V, we arrive at the 
following conclusions. For the smallest value of the threshold 
parameter, the preconditioner is recomputed quite many times. 
This results in that the total solution time increases because the 
time for computing a preconditioner is quite considerable 
(about 3500 ms). The average number of iterations per one 

0

10

20

30

40

50

60

70

80

90

100

1 10 20 30 40 50 60 70 80 90 100

h w t

h w t

||∆Ai||1/||∆A1||1

||∆Ai||∞/||∆A1||∞

i

298



 

 

linear system is very small (about 2), because it is limited 
by N MAX

it .  

TABLE V.  CHARACTERISTICS OF SOLVING 100 LINEAR SYSTEMS FOR 

DIFFERENT VALUES OF N MAX
it  

N MAX
it  

The number of 
recomputing M 

Total number 
of iterations for 

all linear 
systems 

Total 
solution time, 

ms 

Acceleration w.r.t. 
the algorithm with 

the initial 
precondioner 

2 12 196 53673 0.77 

3 5 249 30701 1.35 

4 2 307 24039 1.72 

5 2 415 29504 1.40 

6 1 416 26040 1.59 

7 1 387 24571 1.68 

8 1 389 24978 1.66 

9 1 487 28903 1.43 

10 1 487 29018 1.43 

11 1 496 29303 1.41 

12 1 666 37122 1.11 

13 0 825 41364 1.00 

Thus, in the case considered, the total solution time is 
mainly determined by the time spent on computing the 
preconditioners, whereas the contribution of iterations is small. 
It should be emphasized that the so frequent recomputation of 
the preconditioners is actually not needed because it increases 
the total solution time (the speed up equals 0.77) as compared 
with the case where the initial preconditioner is never modified. 
For the largest value of N MAX

it , the preconditioner is never 
recomputed (the speed up equals 1), and the total solution time 
is mostly determined by the iterations. However, the solution 
time is considerable despite the fact that iterations are not time 
consuming (about 50 ms) because the number of iteration 
increases about 4 times.  

VII. ANIMATED RESPONSE 

For visual display of changes in signal propagating along a 
multiconductor transmission line, animation of calculated plots 
is implemented. Simple example of two coupled lines 
connected as turn of meander line is shown in Figure VI. For 
calculation of the response on pulse signal for circuit diagram 
the theoretical base described in [11] is used. The calculation is 
reduced to the solution of linear algebraic system. The equation 
in the frequency-domain for a network containing n 
multiconductor transmission lines and lumped circuits at the 
ends of the lines can be written as  
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
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where W, H NN  are constant matrices describing the 
lumped memory and memoryless elements of network, 
respectively, and N  is the node-space of network; E(s) 

N is a constant vector with entries determined by the 
independent voltage and current sources; Dk=[i, j] with 
elements li, j }1,0{  where i },...,1{ N , j }2,...,1{ CONDN with a 
maximum of one nonzero in each row or column, is the selector 
matrix that maps the terminal currents of the distributed 
subnetwork to the nodal space of the linear network and NCOND 

is number of conductors of a transmission line; V(s) 
N  is 

the vector of node voltage waveforms appended by 
independent voltage source currents, linear inductor current 
waveforms of linear network; Y(s)k CONDCOND NN 22  is the 
admittance matrix having complex dependency on frequency, 
which are described in terms of transmission line parameters. 

However, the equation (1) allows calculating the signal 
only at the nodes of the circuit. Therefore, to calculate the 
signal propagating along a transmission line for a network we 
used equations: 

V(x)=SV(E(x)C1+E(x)–1C2),

I(x)=SI (E(x)C1–E(x)–1C2),

where SV is the matrix of modal voltages; SI is the matrix of 
modal currents; E(x) is the diagonal matrix {exp(–γ1x), exp(–
γ2x),…, exp(–γNcondx)} and γ is the propagation constant, x is 
the coordinate along the transmission line; С1, С2 are constant 
vectors.  

To find V(x) and I(x) for each transmission line of network 
we must calculate C1 and C2 from equation 
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where E(l) is the diagonal matrix {exp(–γ1l), exp(–γ2l),…, 
exp(–γNcondl)} and γ is the propagation constant of the 
transmission line, l is the length of the transmission line; V(0) 
and V(l) are constant vectors describing the voltage on the near 
and far ends of the transmission line, determined after the 
solution of equation (1). 

For visual display of changes in signal propagating along a 
transmission line it is necessary to indicate the initial node A 
and the end node B on the circuit diagram (Figure VI). After 
assigning the nodes, the possible pathway of the pulse is 
determined automatically. To make the list of available nodes, 
we use the GoThrough algorithm, based on the depth-first 
search algorithm. The conductor, in which the signal 
propagates, is painted the color of the animated diagram of this 
signal waveform. Figure VII presents (in static) the voltage 
waveforms in the time domain for the circuit shown in 
Figure VI. One can see considerable changes of magnitude and 
distortions during the propagation of the pulse along the turn. 
The animated visualization is useful to locate the points of 
possible interference penetration for a circuit. 
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FIGURE VI.  CROSS SECTION OF MEANDER LINE TURN AND 
CIRCUIT DIAGRAM OF THE TURN 

FIGURE VII.  ANIMATION OF RESPONSE ON PULSE SIGNAL: U2, U3 
AND U4 – RESPONSES IN NODES 2, 3 AND 4; U2_3(5) AND U3_4(5) – 

RESPONSES IN HALF-TURN CENTERS  

VIII. TESTING TOOLS 

To speed up the software improvement process, 
development and testing should be performed at the same time 
and be inseparable. Engineers involved in testing should be 
consulted at after each release of the software and alert 
developers of any errors, checking the quality of the developed 
software more thoroughly. In addition, there is a need for the 
regression tests for the detection of errors in previously tested 
parts of the initial code of the software. For this purpose we 
developed the code that uses the script files as initial data. After 
the test, one can know which scripts had errors (results did not 
coincide with the reference). This approach can effectively 
detect and fix regression bugs, which reduces the time required 
to develop and debug new functionality. 

Unfortunately, not all errors can be detected in the testing 
phase, in this regard, there is a need for automatic error 
reporting on user workstations, and these reports should be sent 
to the developers. For this reason, a library of open source - 
Crashrpt [12] was built in the software, allowing to create an 
archive with bug reports, screen shots and information about 
the operating software of a user. If an error leading to the 
closure of the software occurs, a user is offered to send the 
error report, with the ability to preview the contents of an 
archive. A report is sent using a POST request to the http-
server of the developer. To process archive in the language php, 
received from Crashrpt, we implemented a processer that 
extracts information from the archive and adds it to Redmine 
software of management of projects and developer`s goals [13]. 
Reports contain complete information for effective 
determination of the causes of errors and user actions that led to 
errors.  

IX.   CONCLUSIONS 

The main trends in the development of specialized software 
for the simulation of electromagnetic compatibility are given. 
New features of electromagnetic compatibility simulation 
TALGAT software that follow these trends are briefly 
described. Results of simulation for various interconnect 
structures are given. Improvement of simulation is described, 
concerning the main stages of simulation based on method of 
moments. Necessity of taking account for dependence of 
complex permittivity of dielectric substrate is shown. New 
algorithms are presented to accelerate multiple solutions of 
linear algebraic systems by use of particular changes of matrix 
entries. The obtained speed-up shows that the proposed 
approaches are effective. At last, recently designed testing tools 
are briefly described. Thus, the presented results systematically 
describe some new approaches for improvement of 
interconnects simulation based on method of moments. 
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