Some Connectedness and Related Property of Hyperspace with Vietoris Topology

Meili Zhang*

Dept. of Basic Dalian Naval Academy Dalian, China *Corresponding author

Yue Yang

Dept. of Basic Dalian Naval Academy Dalian, China

Abstract—For a Hausdorff space X, we denote by 2^x the collection of all closed subsets of X. In this paper, we discuss the connectedness and locally connectedness of hyperspace 2^x endowed with the vietoris topology. Further path connectedness is investigated. The results generalize some theorems of E. Micheal.

Keywords-connectedness; locally connectedness; path connectedness; vietoris topology; hyperspace

I. INTRODUCTION

There are many different compatible topologies on hyperspace 2^x . Among these topologies, it is well known that finite topology is an important topology. It is called Vietoris topology.

In 1951, E. Michael [1] made a systematic discussion on hyperspace properties with the finite topology. In this paper, the connectedness and related properties of hyperspace 2^x with Vietoris topology are discussed. The results improve some theorems of E. Micheal.

Definition 1.1 Let X be topology space. By 2^X we denote the family of nonempty closed subset of X, and then $\{\langle U \rangle | U \in T\} \cup \{\langle X, V \rangle | V \in T\}$ is a sub base to a topology T_V in 2^X .

 T_V is called the finite topology in 2^X or Vietoris topology.

Obviously, $\{ < U_1, U_2, \dots, U_n > | U_i \in T, i \le n, n \in N \}$ is a base of Vietoris topology, where

$$\langle U_1, U_2, \cdots, U_n \rangle = \left\{ E \in 2^X \mid E \in \bigcup_{i=1}^n U_i, E \cap U_i \neq \emptyset, \forall i \le n \right\}$$

 $Z(X) = \{E | E \subset X, E \text{ is a nonempty compact in } X\};$

For simplicity, we denote by

Bo Deng

Dept. of Basic Dalian Institute of science and technology Dalian, China

Pilin Che

Dept. of math Dalian 44 middle school Dalian, China

 $_{n}(X) = \{E \in 2^{X} | E \text{ has } n \text{ elements in } X \text{ at most}\};$

 $(X) = \left\{ E \in 2^X \mid E \text{ has finite elements in } X \right\}.$

II. CONNECTEDNESS OF HYPERSPACE

Proposition 2.1 Let X be topology space, then (X) is dense in 2^X .

Proof. For given any $U \in T, U \neq \emptyset$, we have U contains the finite subset n(X), and $(X) = \bigcup_{n=1}^{\infty} n(X)$, thus $\langle U \rangle \cap (X) \neq \emptyset$. Similarly, suppose U_1, U_2, \dots, U_n are nonempty open sets, $x_k \in U_k, (1 \le k \le n)$, then $\{x_1, x_2, \dots, x_n\} \in \langle X, U_1 \rangle \cap \langle X, U_2 \rangle \cap \dots \langle X, U_n \rangle \cap$ $n(X) \neq \emptyset$.

Lemma 1 Let X be topology space, we define a mapping $i: X \to 2^X$, $i(x) = \{x\}$, and then i is continuous mapping.

Proof. Suppose $U \in T, U \neq \emptyset$, then $i^{-1}(\langle U \rangle) = \{x \in X \mid i(x) \in U\} = \{x \in X \mid \{x\} \in U\} = U$. If $U_1, U_2, \dots, U_n \in T$, $i^{-1}(\langle U \rangle)$ $= \{x \in X \mid i(x) \in \bigcap_{i=1}^n \langle X, U_i \rangle \neq \emptyset, 1 \le i \le n\}$ $= \{x \in X \mid x \in U_i, 1 \le i \le n\} = \bigcap_{i=1}^n U_i$.

Proposition 2.2 Let X be topology space, a natural mapping $P_r: X^n \to \mathcal{F}n(X)$, we define $P_r((x_1, \dots, x_n))$

= $\{x_1, \dots, x_n\}$, then P_r is continuous mapping.

Proof. For given any $U \in T, U \neq \emptyset$, we have

$$P_r^{-1}(\langle U \rangle) = \{ (x_1, x_2, \dots, x_n) \mid (x_1, x_2, \dots, x_n) \in U^n \}$$

= $U^n, P_r^{-1}(\langle X, U \rangle) = \bigcup_{i=1}^n X_1 \times X_2 \times \dots \times X_{i-1} \times U \times X_{i+1} \times X_n,$

where $X_i = X, 1 \le i \le n$, then P_r is a continuous mapping.

Lemma 2 [2] Let X be topology space, suppose $A \subset X$ is a closed (or an open)set, then $\{E \in 2^X | E \subset A\}$ is a closed(or an open)set in 2^X .

Corollary 1 Let X be topology space, suppose $A \subset X$ is a closed set, and then $\{E \in 2^X | E \cap A \neq \emptyset\}$ is closed in 2^X .

Proof. Since A is closed in X, $X \setminus A = B$ is open in X. By Lemma 2, $\{E \in 2^X | E \subset B\} = \{E \in 2^X | E \subset X \setminus A\}$

 $= \left\{ E \in 2^X \mid E \cap A = \emptyset \right\}$ is open in 2^X .

It follows that

 $\left\{E \in 2^X \mid E \cap A \neq \emptyset\right\} = 2^X \setminus \left\{E \in 2^X \mid E \cap A = \emptyset\right\} \text{ is closed in } 2^X.$

Proposition 2.3 X is a connected topology space if and only if (X) is connected.

Proof. Let $P_r: X^n \to n(X)$ be natural mapping, that is, $P_r((x_1, \dots, x_n)) = \{x_1, \dots, x_n\}$. According to Lemma 1, P_r is a continuous mapping. As X is connected, X^n is connected. So n(X) is connected.

Since
$$(X) = \bigcup_{n=1}^{\infty} n(X)$$
, (X) is connected.

Proposition 2.4 [3] X is a connected topology space if and only if 2^X is connected.

Proof. Suppose X is connected, by [1], X^n is connected, $n = 1, 2, \cdots$. According to Proposition 2.2,

 $P_r: X^n \to n$ (X) is a continuous mapping, and $P_r(X^n) = n(X)$, then n(X) is connected, $n = 1, 2, \cdots$.

$$(X) = \bigcup_{n=1}^{\infty} n(X) \text{ and } \bigcap_{n=1}^{\infty} n(X) = 1(X) \neq \emptyset, \text{ then}$$

(X) is connected. Therefore the closure of (X) is connected in 2^X .

Suppose 2^X is connected, and $X = \bigcap_{E \in 2^X} E$ is not connected, there exists nonempty sets A, B which is open and closed sets, such that $X = A \cup B$ and $A \cap B = \emptyset$, hence $2^X = \{E \in 2^X \mid E \cap A \neq \emptyset\} \cup \{E \in 2^X \mid E \cap A = \emptyset\}$.

Since A is closed, $\{E \in 2^X \mid E \cap A \neq \emptyset\}$ is closed in 2^X . Since B is closed, $\{E \in 2^X \mid E \cap A = \emptyset\}$ $= \{E \in 2^X \mid$

$$E \subset B$$
 is closed in 2^X

Obviously,

$$\begin{split} & \left\{ E \in 2^X \mid E \cap A \neq \varnothing \right\} \ \cap \left\{ E \in 2^X \mid E \cap A = \varnothing \right\} = \emptyset \ , \\ & \left\{ E \in 2^X \mid E \cap A \neq \varnothing \right\} \neq \emptyset \ , \ \left\{ E \in 2^X \mid E \cap A = \varnothing \right\} = \emptyset \ , \\ & \text{thus } 2^X \text{ is not connected. This is contraction. Therefore } X \text{ is connected.} \end{split}$$

Lemma 3 Suppose $U_i \subset X, i = 1, 2, \dots, n$ is connected,

 $< U_1, U_2, \cdots, U_n >$ is connected.

Proof. Since $U_i, i = 1, 2, \dots, n$ is connected, (U_i) is connected (Theorem 4.10 of [1]).

 $(U_1) \times (U_2) \times \cdots \times (U_n)$ is connected, and

 $(X) \cap \langle U_1, U_2, \cdots, U_n \rangle$ is under continuous mapping image of $(U_1) \times (U_2) \times \cdots \times (U_n)$, then

 $(X) \cap \langle U_1, U_2, \cdots, U_n \rangle$ is connected,

 $(X) \cap \langle U_1, U_2, \cdots, U_n \rangle \subset \langle \overline{U}_1, \overline{U}_2, \cdots, \overline{U}_n \rangle$, then $\langle U_1, U_2, \cdots, U_n \rangle$ is connected.

Proposition 2.5 Suppose X is locally connected topology space, then 2^X is locally connected.

Proof. Suppose X is a locally connected topology space and $E \in 2^X$, there exists a neighborhood V of E in 2^X , we can find the connected open sets $U_1, U_2, \dots, U_n \in T$ such that $E \in \langle U_1, U_2, \dots, U_n \rangle \subset V$, hence 2^X is locally connected.

Suppose X is locally connected topology space, $x \in U \subset X$, there exists a connected neighborhood β of $\{x\}$, such that $\beta \subset \langle U \rangle$, so $V = \bigcup_{A \in \beta} A$ is a

neighborhood of X, $V \subset U$ and β are connected. Therefore $\{x\} \in \beta$ and $\{x\}$ are connected.

Lemma 4 [4] Suppose β is an open (closed)in 2^X , then $\bigcup_{E \in \beta} E$ is an open(closed)in X.

Lemma 5 Suppose U is a connected component, U is a connected closed set.

Proof. Since U is a connected component in X, U is connected [1]. \overline{U} is a connected, $U \subset \overline{U}$, U is a component in X, then U is a maximum connected set, $U = \overline{U}$, thus U is a connected closed set.

Lemma 6 Suppose X is a locally connected topology space, then U is a connected component in X and U is an open set.

Proof. Suppose $P \in U$, X is a locally connected, P belong to an open connected set G_P at least, U is a component which contain P, then $P \in G_P \subset U$ and $U = \bigcup \{G_P \mid P \in U\}$, thus U is open set as it is the union of open sets.

Proposition 2.6 Suppose X is a locally connected topology space, U is a connected component in X is and only if $\{E \in 2^X | E \subset U\}$ is a connected component in 2^X .

Proof. Since X is locally connected, U is a connected component in. By Lemma 5 and Lemma 6, U is an open and closed set in X. According to Lemma 2, it follows that $\{E \in 2^X | E \subset U\}$ is an open and closed set in 2^X . Hence $\{E \in 2^X | E \subset U\}$ is a connected component in 2^X .

Suppose $\{E \in 2^X | E \subset U\}$ is a connected component in 2^X . Since X is locally connected, by Corollary 2, we have 2^X is locally connected, so $\{E \in 2^X | E \subset U\}$ is an open and closed set in 2^X . We have $U \in 2^X$:

In fact, $U_1 = \bigcup \{ E \in 2^x | E \subset U \}$. If $U \neq U_1$, there exists $x \in U \setminus U_1$ such that $\{x\} \subset U$ and $\{x\} \in 2^x$, hence

 $x \in U_1$, this is contraction. So $U = \bigcup \{ E \in 2^X | E \subset U \}$.

As $\{E \in 2^X | E \subset U\}$ is closed in 2^X , by Lemma 3, U is closed in X and $U \in 2^X$.

Since $\{E \in 2^X | E \subset U\}$ is an open and closed set in 2^X , by Lemma 3, it follows that U is an open and closed set in X, hence U is a connected component in X.

Lemma 7 [4] Let X, Y be topology space and X is path connected, $f: X \to Y$ is continuous mapping, then f(X) is path connected.

Proposition 2.7 Let X be topology space, then (X) is path connected.

Proof. Since X is path connected, X^n is path connected. We define a natural mapping $P_r: X^n \to n(X)$. By Proposition 2.2, P_r is a continuous mapping.

By Lemma 7, $n(X) = P(X^n)$ [5] is path connected, we have $1 \subseteq 2 \subseteq \cdots \subseteq n \subseteq \cdots$.

As
$$(X) = \bigcup_{n=1}^{\infty} n(X)$$
, $\forall E_1, E_2 \in (X)$, there exists
 $n, m \in N, E_1 \in n, E_2 \in m.$

Assume $n \le m$, $E_1 \in n \subset m$. Since m is path connected [6]-[9], there exists a path from E_1 to E_2 , then X is path connected.

ACKNOWLEDGMENT

This work was supported by the Dalian Naval Academy for Basic Research.

REFERENCES

- E. Michael, "Topologies on spaces of subsets", Trans. Amer. Math. Soc, vol. 71, no. 1, pp. 152-182, 1951.
- [2] J. C. Janusz, "Retractions and contractibility in hyperspaces", Topology and its Applications, no. 154, pp. 333-338, 2007.
- [3] Meili Zhang, "Connectivity of hyperspace", Journal of Liaoning Technical University, no. 26, pp. 331-333, 2007.
- [4] R. Engelking, "General Topology", Warszawa: RWN-polish Scientific Publishers, 1997.
- [5] Meili Zhang, "Connectivity of hyperspace with Vietoris-topology", Journal of Wuhan University of Science and Technology, no. 31, pp.145-146, 2008.
- [6] C. Costantini, L. Holá, P. Vitolo, "Tightness, character and related properties of hyperspace topologies", Topology Appl., no. 142, pp. 245– 292, 2004.
- [7] R. Lowen, P. Wuyts, "The Vietoris hyperspace structure for approach spaces", Acta Mathematica Hungarica, no. 139, pp. 286-302,2013.
- [8] N.C. Esty, "CL(R) is simply connected under the Vietoris topology", Applied general topology, no. 8, pp. 259-265, 2007.
- [9] V. Gutev, "Baire spaces and Vietoris hyperspaces", Proc. Amer. Math. Soc., no. 135,pp. 299-303,2007.