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Abstract—For nonlinear systems (NLS), the estimator design is a 
crucial and important problem. In this paper, projection-filter-
method (PFM) based state estimation approach is proposed to 
NLS. As the weak solution of stochastic differential model of NLS 
is denoted by the Kolmogorov's forward equation, this paper 
presents a new finite-dimensional approximating filter for 
nonlinear filtering problem. By using the differential geometrical 
approach to statistical manifold onto which the stochastic partial 
differential equation of the probability density is projected, a 
finite-dimensional stochastic ordinary differential equation of the 
associating parameters is gained. The arithmetic of the projection 
filter can be predigested in the case of exponential family. 
Combining with the Bayes rule, the posterior density of the states 
is obtained By taking an illustrative example, numerical 
experiment results show that the new state estimator is feasible 
and has good performance than PF. 

Keywords-component; projection filter method; stochastic 
differential model; Kohnogorov's forward equation 

I. INTRODUCTION  
ESTIMATING the state of a stochastic dynamic system 

from noisy observations is an important problem in engineering. 
The extensive work on this problem for linear systems was 
initiated by Kalman and Bucy[1,2]. In the decades since this 
early work, many important theoretical results for the linear 
problem have emerged and the linear filter has found wide 
practical application. However, since most systems are not 
truly linear, linear filtering theory does not apply directly to 
most physical systems. In the more general setting of nonlinear 
systems, filter theory is less developed but has received 
attention from a number of researchers since the 1960s [3-6] 
For linear systems with Gaussian inputs, the probability density 
function of the state conditioned on the measurements is 
Gaussian. Hence, optimal linear filters need only propagate the 
conditional mean and covariance that completely describes the 
density function. However, for nonlinear systems, the 
conditional density may not have a finite parameterization. 
General nonlinear filters must there force propagate the entire 
density function. 

In order to make the Kalman filter apply in non-linear 
system, Bucy,Sunahara and others put forward Extended 
Kalman Filter(EKF)，its basic idea is that nonlinear system 
change into linear system, But assumption conditions of EKF 
algorithm are too harsh, EKF is just effective to nonlinear 
system that approximates linear system in updated interval. so 
it is difficult to apply many physical systems[7,8], 
Subsequently, Julier and Uhlmann proposed and developed 
UKF(Unscented Kalman Filter) method [9,10] ，UKF method 
assume that system noises satisfy Gaussian distribution, it does 
not require system is an system which approximates linear 
system. Julier and Simon made UKF method be applied to the 
vehicle navigation positioning and got a better result than EKF 
[11]. In 1993, British scholar Gordon and others proposed 
Particle Filter algorithm, This method is based on the 
nonparametric sequential Monte-Carlo of Bayesian principles 
to simulate recursive filter algorithm [12], Its core is that it use 
a group with weights of random samples (particles) to 
approximate posterior probability density of the target[8]. But 
in actual application, The above algorithms exist shortcomings 
in the estimation precision, the difficulty of control 
implementation and calculated amount UKF filter and UKF 
filter have purpose to obtain second moment of  probability 
distribution of system state. But practical distribution of 
probability may not be normal distribution, all possibilities of 
system state are clearly to directly solve probability density 
function of the state. 

In this paper, we construct a nonlinear filter that 
approximates the exact nonlinear filter for systems with 
continuous nonlinear dynamics and discrete nonlinear 
observations. Accordingly, the paper represents a departure 
from current research directions in nonlinear filtering. Rather 
than pursue enhancements or modifications of the EKF, or 
explore dual relationships to various non-optimal control 
algorithms, we investigate a method of approximating the exact 
nonlinear filtering problem. Note that if the exact nonlinear 
filtering problem could be solved directly or approximated 
efficiently, it would be widely used today in various industrial 
applications. We hope that this paper is a step in that direction. 
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The exact nonlinear filter consists of two dynamic 
equations[13]: 

1) A partial differential equation (Kolmogorov's forward 
equation) that describes how the conditional density evolves 
between measurements, and  

2) A difference equation (Bayes formula) that describes 
how it is modified by information supplied by new 
measurements. 

To solve these equations we employ Projection filter 
method(PFM), a classic procedure for approximating solutions 
of partial differential equations (PDEs).In the context of the 
forward Kolmogorov equation, Projection filter method was 
suggested by Risker’s as a possible way to approximate the 
solution. However, a detailed analysis was not pursued. 

Projection filter method assumes that the exact solution to a 
PDE can be expanded as an infinite sum of basis elements. An 
approximate solution is found by truncating this sum and 
projecting the resulting error onto the finite subspace spanned 
by the basis elements used to approximate the solution.}b To 
distinguish the approximate filter from the exact filter, and for 
lack of a better name, we will refer to the resulting filter as the 
nonlinear projection filter (NPF). 

Using a complex exponential basis as approximating 
elements, we show that the nonlinear filter can be implemented 
efficiently (for low-order systems) using discrete cosine 
transforms (DCT) resulting in a fast nonlinear filter that could 
be implemented in real time on a digital signal processor. 
Sinusoidal bases have been used before to implement PFM 
based Bayes algorithms, but in much different contexts[14].  

This work is also a natural extension of the application of 
Projection filter method to optimal and robust control. While 
there have been numerous studies that have applied numerical 
methods for solving PDEs, we are not aware of a careful study 
of PFM spectral method to the nonlinear filtering problem.  

An important issue concerns the convergence of the PFM 
approximation. We shall prove that the approximation residual 
converges to zero as the dimension of the finite dimensional 
subspace used in the approximation tends to infinity. In other 
words, the NPF converges to the exact nonlinear filter. One 
limitation in our convergence result is that we do not obtain an 
explicit estimate of the approximation error. We only show that 
the approximation error can be made arbitrarily small by 
making the order of the approximation large enough. 

II. STOCHASTIC DIFFERENTIAL MODEL 
Most physical systems evolve continuously in time while 

measurements may only be taken periodically at discrete time 
instants. Suppose the n-dimensional state 

tx of a continuous 

nonlinear stochastic dynamic system satisfies 

( ) ( ) 0t t t tdx f x ,t dt g x ,t d t tβ= + ≥                    (1) 

where { }0t ,t tβ ≥  is a p-dimensional Brownian motion 

with covariance matrix ( )Q t dt . Let m-dimensional noisy 

measurements be made at discrete times kt  

( )kk t k ky h x ,t v= +                         (2) 

where { }1kv ,k ≥  is an m-dimensional white Gaussian 

sequence independent of tdβ with covariance matrix kR . 
Define the collection of measurements taken up to and 
including time t as { }k k kY y ,t t= ≤ . We seek equations 

of evolution for the conditional density ( )tp x,t |Y because it 
summarizes all the statistical information about the state 
contained in the measurements tY and the initial condition 

( )0p x,t . From ( )tp x,t |Y ,the conditional mean and 
variance can be computed, which for nonlinear systems 
generally depend on all of the higher order moments. 

Between observations at 
kt  and 

1kt +
, ( )tp p x,t |Y≡  

diffuses according to Kolmogorov's forward equation[3]. 

( )( ) ( )
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1
2

n n
ij i
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∂ ∂ ⋅∂
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where either ( )0p x,t  or ( )kt
p x,t |Y ， the measurement 

update at kt , is used as the initial condition, and where 

( )T

ij
gQg ，is the ( )i, j th element of the matrix TgQg . At 

an observation, p  satisfies the Bayes formula  
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   (5) 

and 1kt− +  is the instant in time right before the ( )1k +  sample. 
For a detailed derivation and discussion of these results, see 
Ref. 3.   

Equations (3) represent dynamic equations for the exact 
nonlinear filter. Equation (3) is used to compute predictions 
between measurements, while measurements are used to update 
the information about the state via (4). Kolmogorov’s forward 
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equation (3) and its boundary conditions ( )0p x,t  have formed 

a differential equations boundary value problem. 

III. PREDICTION EQUATION 
To apply projection filter method, we first assume that the 

solution of (3) satisfies 

( ) ( ) ( ) ( )2
0

real k k
k

p H t X x H t X x
∞

=

= ≡∑             (6) 

where equality is in the sense of the 2L  norm, and where 

{ } 0k k
X ∞

=
is a complete set of basis functions for 2L . We 

approximate p  by truncating the sum 

( ) ( )
1

2
0

N

k k
k

p H t X x
−

=

=∑                            (7) 

where the coefficients 2kH , kX are hermit function and satisfy 
the projection equation 
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So 

( )
1

1

N

k k
k

f f X x
−

=

′′ = ∑                              (8) 

By Equations (3), we have 

( ) ( )
( ) ( ) ( ) ( ) ( )2
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By (11), we have 
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By the Equations ( ) ( ) ( )2 0'
kH t H t ,H tλ+ = ，

we have 
( )( )8 1 2 1 kk kλ λ= + + ∆Τ ≡                       (14) 

where ∆Τ shows the total time of program is running.so 
( ) ( ) ( ) ( )2 0k kaX x f X x X x X xλ′′ ′− + =                 (15) 

( )X x denote ( ) ( )
0

N

k k
k

X x c H x
=

=∑ ， by the above 

equation,we have 
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where ( )( ) ( )( )( ) +22 1 4 2 1k k kk f / a k k bλ+ − + + ≡ ,

0 1k , ,=  ,we have 

2 2 0
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k

k i
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The solution of the equation is 
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where 0c ， 1c are obtained by ( )0p x,t ,we have 

( ) ( )
k0

2=
l
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The expression of prior probability density is 
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By the bayesian formula, we can get the posteriori 
probability density  ( )k+11 tkp x,t Y+

, so we have conditions 

mean ( )k+1 k+1tx YΕ ≡ Ε
and covariance ( )k+1 k+1tx Yσ σ≡  

( )k+1k+1 1 1 nk t,t Yp d dξ ξξ ξ
Ω +Ε = ∫ ∫                 (21) 

( )( ) ( )k+1 k+1

+
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k 1
2

t nk tY ,tp d dY

σ

ξ ξξ ξξ +Ω

=

−Ε∫ ∫ 

       (22) 

IV. PREPARE YOUR PAPER BEFORE STYLING 
In this section, consider a reference system in a nonlinear 

state space given by [15], which is described as follows: 

X AX W= +  
( )k k kZ h X e= +  

where ( )Tx y x yX x y v ,v ,a ,a= , ,
is state vector,  

( )31,1 10R diag −= ×
, ( )3 41,0,10,1,11 10 ,1 10Q − −= × ×，

， Initial state satisfies normal distribution
0P , Experimental 

results are shown in Figure 1 and Figure 11 

2 2
0 1 / ,1 ,1 / ,1 / ,0.1 / ,0.1 /P diag m s m m s m s m s m s =  

2
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0 0 1 0 0
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A t

t
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=  
 
 
  
 

 ，
2 2

2 2
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x y

h X
y

x y

 
 + =  
 

+  
 

Here, for PFM, the interval of time is chosen as 1s, the 
quantity of grid is chosen as 50, and the initial state 
is 2 250 ,100 ,1 / ,1 / ,0.3 / ,0.4 /km km m s m s m s m s  

.For 

PF, the number of particles is chosen as 500. the performance 
output of PFM is shown in Figures 1, 11 and 111. The 
conditional density functions are plotted with discrete times. 
After a few measurements, the predicted density function is 
bimodal with modes approximately centered at plus and minus 
the absolute value of the actual state, which is what we expect. 
Numerical experiment results show that the feasibility of the 
proposed stochastic estimating method based on PFM is 
confirmed.  

The true state trajectory and the conditional means of the 
trajectories executed by PFM and PF are given in Figures 1 and 
11. Obviously for a nonlinear non-Gaussian system, PF 
estimating output will lose stableness after a few measurement 
updates. Because the measurement function of PF should be 
linearized with the current mean estimate at each measuring 
step and the second moment of probability distribution of 
system state also has to be obtained, but the real distribution of 
probability may not be normal distribution, the actual state is 
outside of the region where the linearization is valid. e result is 
that the PF estimate jumps outside of the region of attraction. 
Meanwhile, the PFM performs reasonably well by giving the 
limited information available from the measurements and does 
not fail because of the nonlinearities in the system and 
measurement characteristics. 

Figure 1 shows results of estimated mean and root mean 
square error of the system state, Figure 11  and Figure 111, we 
notice that the estimated means and standard deviations of the 
system state using PFM and particle filter are very similar, The 
precision speed and position of the PFM increase with time 
and its high estimated precision and briefness satisfy the need 
of system state. 

V. CONCLUSION 
An PFM-based state estimation approach to nonlinear 

systems has been investigated in this paper. It was shown that 
the new filter can be converged to the true density function in a 
n-dimensional state space. Furthermore, a detailed 
demonstration for how to use the filter efficiently is 
demonstrated, and with a simple example, we can find that 
PFM outperforms the UKF and the PF reasonably It is 
envisioned that the filter could be used to process data from 
sensors with severely nonlinear output characteristics, and how 
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to implement the algorithm in parallel, especially for solving 
high dimension problem. These considerations should be 
further extended in our future work. 
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FIGURE I.  REAL STATE AND ESTIMATED STATE TRAJECTORIEES BY PFM AND PF 
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FIGURE II.  THE ESTIMATEED MEAN AND ROOT MEAN SQUARE ERROR OF POSITION AND VELOCITY. 
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FIGURE III.  THE ESTIMATEED MEAN AND ROOT MEAN SQUARE ERROR OF POSITION AND VELOCITY 
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