
GA and ACO-based Hybrid Approach for Continuous 
Optimization 

Zhiqiang Chen* 
Chongqing Engineering Laboratory for Detection Control 
and Integrated System, School of Computer Science and 

Information Engineering 
Chongqing Technology and Business University 

19, Xuefu Avenue, Nan'an, Chongqing, 400067, China 
*Corresponding author 

Ronglong Wang 
Country Graduate School of Engineering University of 

Fukui 
Fukui-shi, Japan 910-8507 

 
 

 
 
Abstract—This paper presents an hybrid algorithm based on 
genetic algorithm and ant colony optimization for continuous 
optimization, which combines the global exploration ability of 
the former with the local exploiting ability of the later. The 
proposed algorithm is evaluated on several benchmark functions. 
The simulation results show that the proposed algorithm 
performs quite well and outperforms classical ant colony 
optimization and genetic algorithm for continuous optimization, 
which efficiently balances two contradictory aspects of its 
performance: exploration and exploitation. 
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I. INTRODUCTION  

Many real-world application problems in engineering, 
science and technology can be formulated as continuous 
optimization problems (CnOPs) [1,2]. The continuous 
optimization problems always have local as well as global 
optima. Mostly, the user is interested in determining the global 
minima [3]. However, it is more difficult to determine the 
global minima rather than local minima for a lot of multimodal 
problems. As a result, most algorithms are very easy to be 
trapped in the local minima. Besides, for some non-separable 
benchmark problems, in view of the correlations information 
among the variables, the existing algorithms are difficult to 
converge to the global optimum, especially when the scale of 
the problem becomes larger [3,4]. 

Metaheuristics are a family of optimization techniques that 
have seen increasingly rapid development and have been 
applied to CnOPs over the past few years. Among them are 
genetic algorithm (GA) and ant colony optimization (ACO). 
GA has been used in many engineering applications since it 
was introduced as a robust and efficient search technique. The 
popularity of this method is based on simply solving 
multidimensional and multimodal optimization problems 
without requiring any additional information such as the 
gradient of an objective function. Although the origin of this 
method proposed binary number for encoding, over the past 
ten years, there were a surge of studies related to real-coded 
genetic algorithms (RCGA) for continue domain problem [3-6]. 
ACO is inspired by the ants’ foraging behavior and it was first 
applied to solve discrete optimization problems [7-9]. The ant 

colony optimization was extended to the continuous domains 
by Socha [2], called ACOR. 

In this paper, we combine the conditionally breeding 
genetic algorithm model (CGA [4]) with ACOR[2] and develop 
a new hybrid algorithm for CnOPs. Several classical test 
problems available in the global optimization literature are 
used to test the performance of the proposed algorithm. 

II. METHODOLOGIES FOR CNOPS 

A. Conditionally Breeding Genetic Algorithms model 

The original conditionally breeding genetic algorithms 
(CGA) is firstly defined in [10], in which crossover and 
mutation behaviors are performed by difference-degree 
between individuals instead of given probability. The CGA is a 
binary coded GA and thus it was applied to combinatorial 
optimization problems [12,13]. In the literature [4], we extend 
the CGA for continue optimization problems (CGAR). In the 
CGAR, an important parameter controlling crossover and 
mutation is called setting difference-degree Ds (0< Ds <1). Ds, 
which is decreased subsequent generation: 
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where t expresses tth generation, )1,0( is a constant 
variable called cooling ratio. The difference-degree between 
individuals is calculated as follows: Given two chromosomes 

1x and
2x , the difference-degree between 

1x and
2x  is defined 

as follows: 
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where 
111 xxe  , 

222 xxe  and 21 ee   is the 

distance between 
1e  and 

2e . The criterion of crossover and 
mutation in CGA is by the difference-degree between or not by 
probability of conventional GA.  
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B. ACOR 

The first algorithm that can be classified as an ACO 
algorithm for continuous domains is ACOR[2]. In ACOR, the 
discrete probability distributions used in the solution 
construction by ACO algorithms for combinatorial 
optimization are substituted by probability density functions 
(PDFs). ACOR uses a solution archive [14]for the derivation of 
these PDFs over the search space. Additionally, ACOR uses 
sums of weighted Gaussian functions to generate multimodal 
PDFs. ACOR initializes the solution archive with k solutions 
that are generated uniformly at random. Each solution is a D-
dimensional vector with real-valued components 

, with . In this paper, we 
assume that the optimization problems are unconstrained 
except possibly for bound constraints of the D real-valued 
variables xi. The k solutions of the archive are kept sorted 
according to their quality (from best to worst) and each 
solution Sj has associated a weight ωj. This weight is 
calculated using a Gaussian function as [15]: 
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where rank(j) is the rank of solution Sj in the sorted archive, 
and q is a parameter of the algorithm. By computing rank(j), 
the best solution receives the highest weight. The weights are 
used to choose probabilistically a guiding solution around 
which a new candidate solution is generated. The probability 
of choosing solution Sj as guiding solution is given by (2) [15]: 
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So that the better the solution, the higher are the chances 
of choosing it. Once a guiding solution is chosen, the 
algorithm samples the neighborhood of the i-th real-valued 
component of the guiding solution  using a Gaussian 
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which is the average distance between the value of the i-th 
component of  and the values of the i-th components of 
the other solutions in the archive, multiplied by a parameter  
[15]. The process of choosing a guiding solution and 
generating a candidate solution is repeated a total of Na times 
(corresponding to the number of “ants’’) per iteration. Before 
the next iteration, the algorithm updates the solution archive 
keeping only the best k of the k +Na solutions that are 
available after the solution construction process. 

C. CGA and ACO-based Hybrid Approach 

Our past researches showed CGAR is a genetic algorithm 
with excellent ability of global search. However, it does not 
provide a good mechanism to tune the near-optimal in 
promising space for some non-separable function and 
multimodal problems. To improve the performance of CGAR 
and balance between two contradictory aspects of their 
performance: exploration and exploitation, we utilize the 
exploiting mechanism of ACOR to develop a hybrid approach 
as Figure I. BLX-α crossover operator [16], and non-uniform 
mutation operator are used, which are as same as in the 
literature [4]. 

Algorithm:
Input Parameters : NP, NC, Ds, m, D, ξ, …
Initialize Population: P = (P1, P2, , PNP)

L = (xmax-xmin))/(2*(m+NC);
for j = 1 : k

for i =1 : D
Pj

i= normrnd(xmin +2*i*L ), L);
end

end
while (termination criterion is not satisfied)

//Generate set G with NC new solutions using CGAR

for k = 1 : NC

Randomly Select a pair pi with two Solution from P;
Calculate difference-degree di of  pair pi ;
if   di>Ds

Crossover are performed on pair pi;
Store and evaluate newly generated solution into G;
NC+=2;

else
Mutation are performed on pair pi;

end
end
Update population P with the best NP solutions of P+G;
//Generate set M with m new solutions using ACOR

for j=1 : m 
Select solution Sj from P according to weights;
Generate a new solution based on (5);
Store and evaluate newly generated solution;

end
Update population P with the best NP solutions of P+M; 
Update Ds;

end
 

FIGURE I. HYBRID APPROACH BASED ON CGA AND ACOR 

III. EXPERIMENT AND DISCUSSION 

A. Experimental setup 

In order to verify the effectiveness of the proposed 
algorithm, we use the following four test functions. Sphere 
function f1 is the basic function to evaluate the algorithm [5]. 
For the non-separable function we choose Rosenbrock function 
(f2)[17]. For the multimodal functions, the Schwefel function 
(f3) and the Rastrigin function (f4) are chosen. The 
dimensionality is set to 30 for all test functions. 
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2. Rosenbrock function 
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3. Schwefel problem 
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4. Rastrigin function  
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The parameters used in the proposed algorithm are as 
follows: population size NP, the number of offspring generated 
by CGAR: NC, the number of offspring generated by exploit 
scheme: m, the parameter of standard deviation , the 
setting difference-degree Ds and cooling ratio μ. In this work, 
all parameters are set as follows: NP  = 180, NC=30, m = 30, 

=0.76, Ds=0.1 and μ = 0.999. 

B. Performance Evaluation 

To investigate the performance of the proposed algorithm, 
the convergence properties on four typical functions are 
analyzed, in comparison with the CGAR [3] and ACOR [2]. As 
shown Fig.2~5, the proposed hybrid approach can be fastest to 
find the global optimum than CGAR and ACOR. 

For each test functions we performed 25 independent runs 
using each algorithm. The stopping criterions are as follows: 

(s∗ is the global optimal solution), and 
the maximum number of function evaluations (MaxFEs) is set 
to 4E+6. It means that if the error accuracy does not reach 10−7 
within 4E+6 FEs, the simulation run is considered to an 
unsuccessful run. CGAR+FPDD-LX [3] and the differential 
evolution (DE) [18] are employed to compare with the 
proposed algorithm. The CGAR+FPDD-LX is another CGAR 
with local search mechanism. The DE is the state-of-the-art 
algorithm that is useful for the real world application, and we 
select the classical DE approach called DE/rand/1 to compare 
with the proposed algorithm. The mean numbers of the FEs of 
25 independent runs for the above algorithm are recorded in 
Table 1. From the result in Table 1, we can see that the number 

of the FEs of the proposed algorithm is far fewer than CGAR, 
ACOR  , DE/rand/1 and CGAR+FPDD-LX.  

 
 

FIGURE II. THE CONVERGENCE PROCESS ON THE SPHERE 
FUNCTION 

 
FIGURE III. THE CONVERGENCE PROCESS ON THE ROSENBROCK 

FUNCTION 

 
FIGURE IV. THE CONVERGENCE PROCESS ON THE SCHWEFEL 

FUNCTION 

 
FIGURE V. THE CONVERGENCE PROCESS ON THE RASTRIGIN 

FUNCTION 
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TABLE I. COMPARING WITH OTHER ALGORITHMS, D = 30 

Func This work CGAR ACOR DE/rand/1 
CGAR+ 

FPDD-LX

f1 1.31e+4 1.36e+4 1.84e+4 4.39E+4 1.26E+4 

f2 4.48e+5 -- 1.20e+6 – 3.40E+5 

f3 1.93e+4 -- 2.54E+5 5.0E+5 7.43E+5 

f4 2.38e+4 2.27e+5 -- 8.43E+4 2.40E+5 

IV. CONCLUSIONS 

In this paper, we proposed an effective hybrid algorithm 
based on genetic algorithm and ant colony optimization for 
continuous optimization in continuous domains. To evaluate 
the proposed algorithm, we have carried out a lot of 
simulations on several benchmark problems. Simulation 
results showed the proposed scheme distinctly improved the 
performance of CGAR and ACOR, especially for the non-
separable functions and multimodal functions. The proposed 
algorithm has been compared with some evolutionary 
algorithms. From the results, we can see that the proposed 
algorithm outperforms the other algorithms. 
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