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Abstract—Based on the biological control strategy in the pest 
management, we studied a predator-prey model with delayed 
stage structure and impulsive control. Using the theories and 
methods of impulsive delayed differential equations, we obtain
the sufficient conditions, which guarantee the global attractivity 
of pest-eradication periodic solution and permanence of the 
system.

Keywords-predator-prey model; impulsive control; stage 
structure; global attractivity; permanence

I. INTRODUCTION

The predator-prey system is an important population model, 
which has received extensive attention (see [1-3] and 
references therein). How to scientifically and effectively 
control pest also has been research problem. In the past, 
people tried to use the method of spraying pesticides to control 
pests. However, there are many negative effects associated 
with the use of pesticides, which include pollution of the 
environment, pest resistance to pesticides, human illnesses 
associated with pesticide applications, and diminution of 
biodiversity. Biological control is another method of pest 
management. It is the practice of using natural enemies such as 
predators and parasites to suppress a pest population [4-5].

In natural world, there are many species whose individuals 
have a history that can be divided into two stages immature 
and mature. As is common, the dynamics-eating habits, 
susceptibility to predators, etc. are often quite different in 
these two sub-populations. Hence, it is of ecological 
importance to investigate the effects of such a subdivision on 
the interaction of species.

Aiello and Freedman [6] proposed and studied the stage 
structured single-species population model with time delay

where and represent the densities of the 
immature and mature population at time , respectively; is 
the birth rate of the immature population at time ; and 

are the death rates of the immature and mature at time , 

respectively; is the maturity; represents 
the quantity which the immature born at time can 

survive at time . Based on the ideas above, many authors 
studied different kinds of ecology models with stage structure 
[7-10].

In this paper, based on the biological pest management 
strategy with releasing natural enemies at different fixed 
moments, we establish a predator-prey model with delayed 
stage structure in pest.

(1)

where represent the densities of the immature and 

mature pest at time , respectively; represents the 

density of the natural enemy at time ; is the maturity; the 
birth rate of the immature pest is ; the death rates of the 
immature and mature pest are and , respectively; is 
the death rate of the natural enemy; the growth of the species 
obeys a Holling type-Ⅱ functional response; is the 

capturing rate of the predator; is the conversion rate of 
nutrients into the reproduction of the predator; represents 
the constant amount of natural enemies released each time; 
is the period of the impulsive effect; all the parameters are 
positive.

The initial conditions for system (1) take the form

,

.       (2)

By the fundamental theory of functional differential 
equations [11], it is well known that system (1) has a unique 
solution satisfying initial conditions (2). 
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Further, it is easy to show that all solutions of system (1) with 
initial conditions (2) are defined on and remain 

positive for all .

Lemma 1 All positive solutions of system (1) satisfying 
initial conditions (2) are ultimately bounded, that is, there 
exists a constant such that ,

, for all large enough.

Lemma 2 The impulsive differential system

has a globally asymptotically stable positive periodic solution

.

II. EXISTENCE  AND GLOBAL  ATTRACTIVITY OF THE PEST-
ERADICATION PERIODIC SOLUTION

Because the second and third equations of (1) do not 
contain , we can simplify model (1) and restrict our 
attention to the following model 

             (3)

the initial conditions for system (3) are

,             (4)

Theorem 1  System (3) has a pest-eradication periodic 
solution , where

, .

Proof If , we have the following subsystem of (3)

From Lemma 2, we know that the system has a globally 
asymptotically stable positive periodic solution 

,

therefore System (3) has a pest-eradication periodic solution 
. This completes the proof.

Theorem 2 Let be any solution of system 
(3). If 

                        (5)

holds, then the pest-eradication periodic solution of 
(3) is global attractive.

Proof  If , we may choose a 

sufficiently small such that 

.                        (6)

With the second equation of (3), we know .
Consider the following impulsive differential equation

  

From Lemma 2, we know that the system has a globally 
asymptotically stable positive periodic solution

.

Using the comparison theorem of impulsive equation, we 
get that and as .

Therefore there exists a such that for

.         (7)

With the first equation of (3), we know 

, , .
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Consider the following comparison equation

, , ,

From Lemma 2.1 in [12], we know that

, then 

for all large enough.

With the first equation of (3) again, we know 

.

Consider the following comparison equation

.

From (6), we get that . By Lemma 2.1 in

[12] we have . Then

.

Because of the positivity of , we obtain that 

. Therefore for sufficiently small , there 

exists a such that for all

.

With the second equation of (3), we know

,

so and , as 

, while and are the solutions of

and 

respectively. For , .

Therefore for sufficiently small , there exists a 

such that 

for all .

Let , then we have 

for all large enough, which implies that as 

, that is, the pest-eradication periodic solution 
of (3) is global attractive. This completes the proof.

III. PERMANENCE

Theorem 3  If holds, then system (3) is 

permanent.

Proof  The first equation of (3) can be rewritten as

.

Let 

.

We calculate the derivative of along the solution of 
(3) 

.         (8)

Since , we can choose 

and sufficiently small such that

.
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We claim that for any , it is impossible that 

for all . Otherwise there exists a

such that for all . It follows from the second 

equation of (3) that for all .

Case 2. Assume that is oscillatory about for all 

large enough.

Define 

, where .

We will prove that for all large enough. 

Suppose that there exist two positive constants and such 

that and for 

, where is sufficiently large such that 

. The positive solutions of (3) are ultimately 

bounded and is not effected by impulses. Therefore 

is uniformly continuous. Hence there exists a 

( and is independent of the choice of ) such 

that for . If , our aim 

is met. If , from the first equation of (3), we know 

that for 

.

With the condition we know that 

holds for . Similarly, we can prove 

that holds for . Since the 

interval is arbitrarily chosen, we get that 

for all large enough.

From the proof of Theorem 2, we know than for 
all large enough. This completes the proof.
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